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Summary

 

For years, cosmetic ingredients for anti-aging treatments have attracted consumers.
Skin aging is accelerated by reactive oxygen species (ROS), generated by exposure to
solar ultraviolet radiation (UVR), in a process known as photoaging. Because cutaneous
iron catalyses ROS generation, it is thought to play a key role in photoaging. Iron is
essential to almost all forms of  life. However, excess iron is potentially toxic as its catalytic
activity induces the generation of  ROS. Iron-catalysed ROS generation is involved in
numerous pathological conditions, including cutaneous damage.

When skin is directly exposed to UVR, cutaneous intracellular catalytic iron levels
increase because of  the release of  iron from iron-binding proteins such as ferritin.
Consequently, the subsequent ROS generation may overwhelm cutaneous defense systems
such as the cellular iron sequestration and ROS scavenging capacity.

The harmful role of  excess cutaneous iron implies that there may be a potential for
topical iron chelator treatments. We now consider cutaneous photodamage skin photo-
aging as the result of  iron-catalysed ROS generation and discuss preventative strategies
based on iron chelators.
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Introduction

 

For years, anti-aging cosmetics have attracted consumers
with their expected ability to reduce wrinkles and other
signs of  skin aging. Retinol, 

 

α

 

-hydroxy acid (AHA), and
various sunscreen agents are components of  anti-aging
products in the current skin care market. Skin aging is
accelerated by reactive oxygen species (ROS), generated
by exposure to solar ultraviolet radiation (UVR), in a
process known as photoaging.

 

1,2

 

 Therefore, antioxidants,
such as ascorbate and 

 

α

 

-tocopherol, are often incorporated
into anti-aging products. Recently, coenzyme Q10
(ubiquinone) has appeared on the market as a powerful
antioxidant. Several antioxidants have been shown
experimentally to reduce the various harmful effects
induced by UVR.

 

3,4

 

 Iron is thought to play a key role in

the generation of  ROS by UVR.

 

5,6

 

 Iron is essential for
critical life functions, including oxygen transport, energy
metabolism and cell proliferation. However, it has been
reported that iron causes oxidative stress in the body.

 

7

 

One of  the deteriorative effects of  iron is its catalysis of
ROS generation. As shown in Fig. 1, iron participates in
the Fenton reaction to catalyse the reduction of  hydrogen
peroxide to a hydroxyl radical (

 

•

 

OH), which is a highly
reactive and largely indiscriminate oxidant

 

5,6

 

 as follows:

H

 

2

 

O

 

2

 

 + Fe

 

2+

 

 

 

→

 

 OH + OH

 

−

 

 + Fe

 

3+

 

The iron is sequestered by iron-binding proteins, such as
transferrin and ferritin, under normal conditions and
does not participate in ROS generation.

 

8

 

 However, iron is
released from these proteins when the body is exposed to
oxidative stress.

 

7

 

 This free iron catalyses ROS generation
by the mechanism described above (Fig. 1). Iron-catalysed
ROS formation is involved in numerous pathological
conditions, including UVR-induced skin damage,

 

9

 

coronary heart disease,

 

10

 

 atherosclerosis

 

11

 

 and Alzheimer’s
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disease.

 

12

 

 Therefore, the suppression of  ROS generation
should help to protect the skin against the aforementioned
damage. One of  the approaches to suppressing ROS
generation is to inhibit the catalytic activity of  free iron.
Several iron chelators have been reported to suppress ROS
generation and the ensuing pathological conditions.

 

13–15

 

These results have shown that the design of  a suitable
iron chelator to reduce oxidative stress will lead to protec-
tion against several types of  oxidative damage including
photoaging. Among them, we have focused our attention
on the reduction of  UV light-induced oxidative stress in
skin by iron chelators. We now consider skin photoaging
as the result of  iron-catalysed ROS generation and discuss
preventative strategies based on iron chelators.

 

Iron ion-induced damage in skin

 

UV-induced ROS generation

 

Skin is an organ that is directly exposed to both UVR and
concentrated oxygen. Therefore, we can easily imagine
ROS generation in skin irradiated by solar radiation
containing UVR. Darr and Fridovich reviewed the influence
of  ROS generation with a focus on the skin.

 

16

 

 For example,
the hydroxyl radical, which is an extremely reactive
species, is thought to be generated via the Fenton reaction
coupled with cutaneous iron ions. Singlet oxygen seems
to be generated by the excitation of  an oxygen molecule in
the presence of  a cutaneous photosensitizer. Nitric oxide
(NO) as well as ROS are formed in cutaneous cells and
NOS is thought to be involved in signal transduction
pathways in the skin.

Electron-spin resonance (ESR) is often used for real-
time measurements of  ROS generation. This technique

revealed that a hydroxyl radical and a superoxide anion
were generated by the UVB irradiation of  murine kerati-
nocyte homogenates.

 

5,17

 

 In addition, a lipid peroxide
radical has been detected at low temperature (

 

−

 

150 

 

°

 

C).
The generation of  these radicals is thought to be due to
cutaneous iron ions, because the radicals disappeared
with the addition of  an iron chelator.

When intact or homogenized skin is exposed to UV
irradiation, the cutaneous ascorbate is oxidized to an
ascorbate radical via reactions with ROS and/or by direct
oxidation. Therefore, the ascorbate radical is thought to
be an indicator of  oxidative stress in skin. Jurkiewicz and
Buettner showed that the ascorbate radical was directly
detectable by ESR and, using this technique, they investi-
gated the ROS generation mechanism in skin exposed to
UVR.

 

18–20

 

 These investigators found that an iron chela-
tor, desferrioxamine (DFO), suppressed the appearance of
the ascorbate radical.

 

18–20

 

 Using a murine skin homogenate
exposed to UVR, we have shown that the addition of  iron
ions accelerated ascorbate oxidation.

 

21

 

 These results
suggest that the iron ion plays an important role in ascor-
bate radical generation in the skin.

The role of  the iron ion which catalyses hydroxyl radical
generation via the Fenton reaction is significant because
the hydroxyl radical is the most reactive moiety among
ROS. It reacts directly with biomolecules, such as lipids and
DNA, and causes lipid peroxidation and DNA damage,
followed by aberrant protein formation.

 

22,23

 

 Thus, ROS
and iron ions are deeply involved in the generation of  skin
damage.

 

24.25

 

Cutaneous iron ions are usually stored in iron-binding
proteins, such as ferritin and transferrin, and are thus in
an inactive form in terms of  their catalytic activity in ROS
generation. However, various oxidative stresses, includ-
ing UVR, seem to induce the release of  iron ions from
iron-binding proteins. The released iron causes ROS
generation via the Fenton reaction.

 

26

 

 In addition, the
released iron also induces direct oxidation of  the biomol-
ecule via an equilibrium between the ferric and ferrous
ions.

 

27

 

Implication of iron ions in UVB-induced damage

 

Solar UVR is classified into UVA (320–400 nm) and UVB
(290–320 nm). Many reports have shown that iron ions
are involved in skin damage induced by UVR. Bissett 

 

et al

 

.
showed the deposition of  free iron in the dermis in a
histological study of  UVB-irradiated hairless mouse skin.
In addition, a human histological study revealed that the
iron content of  sun-exposed body sites, such as the face
and neck, was 

 

≈

 

 2–3 times higher than that of  non-exposed
sites, such as the buttock and thigh.

 

9

Figure 1 Role of  iron in UV-induced reactive oxygen species (ROS) 
generation and lipid oxidation in cells and tissues.5,6
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Brenneisen 

 

et al

 

. found that the iron chelator, DFO, and
the hydroxyl radical scavengers, dimethylsulfoxide (DMSO)
and Trolox, suppressed UVB-induced collagenase (matrix
metalloprotease-1; MMP-1) expression in dermal fibro-
blasts.

 

28

 

 Collagenase expression is thought to be involved
in skin photoaging because dermal extracellular matrix
components, such as collagen, are severely damaged
in photoaged skin. These results indicate that iron is
involved in UVB-induced ROS generation and the ensuing
photoaging.

 

Implication of iron ions in UVA-induced damage

 

In terms of  UVA-induced photodamage, reports have
shown that singlet oxygen (

 

1

 

O

 

2

 

), but not a hydroxyl
radical, plays a principal role in UVA-induced
cytotoxicity.

 

29

 

 UVA-induced photosensitization of
porphyrin is a possible mechanism for singlet oxygen
generation.

 

30

 

Although the aforementioned report stressed the
importance of  the involvement of  singlet oxygen, the
involvement of  iron ions in UVA damage has been des-
cribed in several reports. Morlière 

 

et al

 

. showed that the
UVA-induced cytotoxicity of  dermal fibroblasts increased
with iron ion load. Incubation with DFO led to a pro-
tective effect on cells exposed to UVA.

 

31

 

 Petersen 

 

et al

 

.
reported that the intracellular levels of  H

 

2

 

O

 

2

 

 were
increased in UVA-induced DNA damage of  keratinocyte
cell lines.

 

32

 

 Petersen 

 

et al

 

. demonstrated that DFO
suppressed both H

 

2

 

O

 

2

 

 production and DNA damage,
whereas 

 

1

 

O

 

2

 

 scavengers, such as sodium azide and 

 

β

 

-
carotene, did not. Moreover, these forms of  damage were
stimulated by the addition of  iron ions. Vile and Tyrrell
reported that iron ion and 

 

1

 

O

 

2

 

 were involved in the UVA-
induced oxidation of  lipids and proteins in dermal fibro-
blasts.

 

33

 

 They demonstrated that the iron ion was released
from the iron-binding protein by UVA. Pourzand 

 

et al

 

.
found that ferritin in dermal fibroblasts also decomposed
upon UVA irradiation of  the cells, and the amount of  free
iron increased.

 

34

 

 These results indicate that both the
Fenton reaction with iron ions and photosensitization
with 

 

1

 

O

 

2

 

 play key roles in UVA-induced damage. Thus, free
iron ions have a harmful role in cutaneous photodamage
induced by UVA as well as UVB.

 

The cutaneous defense system and its 
limitations

 

ROS scavenging by antioxidants

 

Cutaneous antioxidants play an important role in the
skin’s defense system against the oxidative stress caused

by iron ions and UVR. They range from low molecular mass
compounds, such as 

 

α

 

-tocopherol, ascorbate, glutathione,
and ubiquinone, to proteins, such as superoxide
dismutase (SOD) and catalase. These antioxidants work
by scavenging ROS and returning the oxidized species
to their reduced state.

 

35

 

 However, UV irradiation reduces
the amounts of  these antioxidants and hinders the
cutaneous defense system.

 

36–38

 

 Moreover, it has been
reported that antioxidants may further exacerbate
iron-induced damage (pro-oxidant effect). The ability of
antioxidants to reduce ferric ions to ferrous ions promotes
the generation of  hydroxyl radicals via activation of  the
Fenton reaction.

 

39–42

 

Sequestering iron ions by ferritin

 

In cells, the excess iron required for metabolism is stored
in ferritin.

 

8

 

 UVA-induced oxidative stress of  human
epidermal keratinocytes and dermal fibroblasts leads
to increased levels of  ferritin as well as iron ions.

 

43

 

 Vile

 

et al

 

. showed that the induction of  ferritin reduced cell
membrane damage caused by UVA irradiation, suggesting
that enhancement of  the cellular iron sequestering capacity
increased resistance to UVA stress.

 

44

 

 Cai 

 

et al

 

. found that
ferritin induction suppressed UV-induced DNA strand
breaks.

 

45

 

 Vile and Tyrrell reported that the foregoing
activation of  heme oxygenase by UVA irradiation was
closely associated with an increase in the cellular ferritin
level.

 

46

 

 Ferritin constitutes the storage for intracellular
free iron via heme oxygenase activation, and suppresses
various iron-catalysed harmful reactions. Ferritin induction
also occurs in human skin 

 

in vivo

 

. Immunohistochemical
analyses revealed that ferritin is increased in both
epidermal and dermal tissue.

 

47,48

 

 Therefore, it is believed
that ferritin induction plays a protective role in the
skin.

However, as previously mentioned, UVA exposure
caused ferritin to decompose and free iron to increase in
dermal fibroblasts.

 

34

 

 Therefore, it seems that ferritin
photoprotection has limitations, especially with an excess
of  UVA.

 

Applications of iron ion chelators

 

Strategy of molecular design

 

The harmful role of  free iron ions and the limitations of
the defense systems against cutaneous photodamage
indicate the value of  topical iron chelator treatments. That
is, sequestering iron using chelating agents is an effective
approach to prevent the generation of  deleterious ROS
that cause UV-induced damage. There are six binding
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sites in iron ions. In general, when all the sites are occupied
by a ligand molecule (chelator) the iron complex no longer
catalyses the Fenton reaction. Therefore, the chelators
need to be able to form a stable complex with the iron
ions. An effective stability constant, log 

 

K

 

eff

 

, was a suitable
parameter to estimate the stability under physiological
conditions. Shalev and Hebbel showed that chelators
with a high value of  log 

 

K

 

eff

 

, such as DFO, effectively
sequestered cellular iron ions.

 

49

 

The formation of  a stable iron complex is necessary, but
not sufficient, for the inactivation of  iron ions. The toxic-
ity of  Fe

 

2+

 

 is far higher than that of  Fe

 

3+

 

, because Fe

 

2+

 

 acts
directly as a catalyst for the Fenton reaction. The Fe

 

3+

 

/
Fe

 

2+

 

 equilibrium in a chelator–iron complex is determined
by the reduction–oxidation (redox) potential of  the
complex. In general, a complex with a low redox potential
reduces the ratio of  the Fe

 

2+

 

 concentration.

 

60

 

 The DFO–
iron complex shows a fairly low redox potential (

 

−

 

440 mV

 

vs

 

. normal hydrogen electrode).
These suitable physical properties of  DFO, with respect

to the redox potential as well as the stability constant,
seem to lead to the suppression of  iron-induced dam-
age.

 

51

 

 The various efficacies of  DFO are described below.
In contrast, EDTA, which is a typical iron chelator, is
disadvantageous because the redox potential of  the
EDTA–iron complex is high (120 mV). Actually, there
are many reports of  the pro-oxidative effects of  EDTA.
For example, EDTA accelerates ascorbate oxidation in
the presence of  iron ions.

 

52

 

Efficacy and limitations of DFO

 

As mentioned above, ROS are generated in human or
mouse skin exposed to UVR, and the ROS signals can
be detected by measuring the ESR. It has been reported
that the ESR signals are diminished by the addition
of  DFO.

 

18,20

 

 DFO, like ferritin, may also have a
protective role against UVA-induced damage. When dermal
fibroblasts were exposed to UVA, heme oxygenase-1 (HO-
1) was induced, followed by an increase in the ferritin
level, as previously described.

 

46

 

 However, the addition
of  DFO to the cells did not enhance the ferritin level,
suggesting that DFO sequestered the iron ions, like
ferritin.

 

46

 

In contrast to its aforementioned efficacy, DFO has
various limitations in terms of  its clinical use. It is known
that DFO treatment is accompanied by several side effects,
such as septicaemia.

 

53,54

 

 The toxicity of  DFO has also
been reported in reviews.

 

55,56

 

 These unfavorable aspects
seem to be due to its extremely high affinity for iron ions.
Indeed, DFO not only traps free iron but also removes
stored iron from iron-storage proteins.

 

57–59

 

Efficacy of iron chelators 

 

in vitro

 

Dean and Nicholson investigated the efficacies of  typical
iron chelators, such as DFO and EDTA, using non-cellular
ROS generation systems.

 

60

 

 Galey 

 

et al

 

. assessed whether
the chelators showed a suppressive effect on iron-induced
damage, using dermal fibroblasts. They found that

 

N

 

,

 

N

 

′

 

-bis-dibenzyl ethylenediaminediacetic acid (DBED)
scavenged the hydroxyl radical and was converted to

 

N

 

-2-hydroxybenzyl-

 

N

 

′

 

-benzyl ethylenediaminediacetic
acid (HBBED).

 

61

 

 HBBED formed a stable iron complex
and remarkably decreased the catalytic properties of  the
iron.

 

61

 

 HBBED also reduced the cytotoxicity induced by
peroxidation.

 

62

 

 Galey 

 

et al

 

. advanced the study using
structural modifications, and discovered the high efficacy
of  the esterified derivative of  

 

N

 

,

 

N

 

′

 

-bis(3,4,5-trimethoxy-
benzyl)ethylenediamine-

 

N

 

,

 

N

 

′

 

-diacetic acid (OR10141).

 

63

 

The authors have designed amino acid derivatives that
mimic the iron ion binding site of  iron-binding proteins:

 

N

 

-(2-hydroxy-1-naphthol) amino acids and 

 

N

 

-(2-hydroxy-
benzyl) amino acids.

 

64–66

 

 For example, 

 

N

 

-(2-hydroxy-
benzyl)-

 

l

 

-serine (HBSer) suppressed UVB-induced
cytotoxicity in murine dermal fibroblasts. In contrast,
DFO had no effect because of  its cytotoxicity.

Recently, Creighton-Gutteridge and Tyrrell found that
HBSer sequestered intracellular iron, but its influence on
the intracellular states was different from that of  DFO.

 

67

 

It is known that iron chelation by DFO induces a hypoxic
response, for example, the activation of  hypoxia-inducible
factor-1 (HIF-1).68 In their study, HBSer was similar to
iron-binding proteins in that it sequestered iron without
activating HIF-1. These results may be due to iron seques-
tration by HBSer, in the same way as iron-binding proteins.

Efficacy of iron chelators in vivo

Assessments using hairless mice are used widely to
investigate the in vivo efficacy of  materials against photoag-
ing. UV irradiation of  the mouse induces various forms
of  skin damage, such as wrinkle formation, denaturation
of  dermal matrix components, lipid peroxidation, free
iron deposition and so on. It is thought that these
changes correspond to those occurring in human skin
photoaging.69,70

Bissett et al. were the first to show the efficacy of  the
iron chelator using this technique. Wrinkle formation in
mouse skin, caused by UVB radiation, was delayed by the
application of  2,2′-dipyridyl, 1,10-phenanthroline and
2,2′-dipyridylamine (DPA), which possess iron-binding
properties. Skin histological observations revealed that
the chelators suppressed UVB-induced epidermal hyper-
trophy. Bissett et al. concluded that these photoprotective
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properties were due to sequestration of  the iron ion,
because DPA significantly suppressed the increase in
free iron content in the skin.9 Later, Bissett and McBride
showed the efficacy of  a topical iron chelator, 2-
furildioxime (FDO).71 FDO exerted inhibitory effects on
UV-induced erythema and epidermal hypertrophy in
human skin.72

Using hairless mice, we found that N-(4-pyridoxy/
methylene)-l-serine (PYSerine) delayed UVB-induced wrinkle
formation and dermal hypertrophy.73 The redox potential
of  the PYSerine–iron complex is −34 mV, which indicates
better stabilization of  Fe3+ by PYSerine compared with
EDTA (120 mV). Actually, PYSerine suppressed the
Fenton reaction as well as HBSer in an in vitro assay.

Kojic acid (5-hydroxy-2-(hydroxymethyl)-4-pyrone),
which is widely used as a whitening reagent in Japan, has
an iron-chelating function.74 Recently, kojic acid has been
shown to have anti-wrinkle properties and to suppress
the deposition of  glycosaminoglycan in the dermis of
hairless mice irradiated with UVB.75

Thus, the protective potential of  iron chelators sug-
gests that they could be valuable as anti-aging cosmetic
ingredients. The validity of  this reasoning should be assessed
by testing the efficacy of  the iron chelators in clinical
human skin studies.

Future directions

Recent advances in molecular biological analyses have
revealed several gene expression pathways involved in
oxidative damage. In this respect, it has been shown that
transcription factors, such as nuclear factor-kappa B
(NF-κB) and activator protein-1 (AP-1), are regulated by
ROS generation and are involved in skin photoaging.76–78

It has been reported that iron plays an important role
in these pathways, and that DFO-modulated NF-κB and
AP-1 activation by ROS and UVR.79–81 We found that one
of  the aforementioned amino acid-based iron chelators,
N-(2-hydroxybenzyl)glycine (HBGly), suppressed UVB-
induced NF-κB activation in human keratinocytes.82

These results suggest that photoprotection by iron
chelators favorably influences gene expression pathways.
A better understanding of  these beneficial properties
might provide further effective cosmetic products based
on iron chelators.

Conclusions

Iron participates in UV-induced skin damage, such as
photoaging. The participation of  iron involves ROS
generation by its catalytic activity. Excess UV exposure
to cutaneous cells releases catalytic iron from ferritin and

overwhelms its iron-sequestering capacity. These results
indicate the value of  topical iron chelator treatments. From
this viewpoint, the protective potential of  iron chelators,
in both in vitro and in vivo assays, has been discussed in
this article. These beneficial properties hold great promise
for practical applications to prevent chronic photoaging.
We wish to make further progress toward the clinical
and/or cosmetic utilization of  iron chelators.
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