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At the core of contemporary motphomettics-the quantitative study of biological shape 
variation-is a synthesis of two originally divergent methodological styles. One contributory 
tradition is the multivariate analysis of covariance matrices originally developed as biomet- 
rics and now dominant across a broad expanse of applied statistics. This approach, couched 
solely in the linear geometry of covariance structures, ignores biomathematical aspects of 
the original measurements. The other tributary emphasizes the direct visualization of 
changes in biological form. However, making objective the biological meaning of the 
features seen in those diagrams was always problematical; also, the representation of 
variation, as distinct from pairwise difference, proved infeasible. 

To combine these two variants of biomathematical modeling into a valid praxis for 
quantitative studies of biological shape was a goal earnestly sought though most of this 
century. That goal was finally achieved in the 1980s when techniques from mathematical 
statistics, multivariate biometrics, non-Euclidean geometry and computer graphics were 
combined in a coherent new system of tools for the complete regionalized quantitative 
analysis of landmark points together with the biomedical images in which they are seen. 

In this morphometric synthesis, correspondence of landmarks (biologically labeled geo- 
metric points, like “bridge of the nose”) across specimens is taken as a biomathematical 
primitive. The shapes of configurations of landmarks are defined as equivalence classes with 
respect to the Euclidean similarity group and then represented as single points in David 
Kendall’s shape space, a Riemannian manifold with Procrustes distance as metric. All 
conventional multivariate strategies carry over to the study of shape variation and covaria- 
tion when shapes are interpreted in the tangent space to the shape manifold at an average 
shape. For biomathematical interpretation of such analyses, one needs a basis for the 
tangent space compatible with the reality of local biotheoretical processes and explanations 
at many different geometric scales, and one needs graphics for visualizing average shape 
differences and other statistical contrasts there. Both of these needs are managed by the 
thin-plate spline, a deformation function that has an unusually helpful linear algebra. The 
spline also links the biometrics of landmarks to deformation analysis of the images from 
which the landmarks originally arose. 

This article reviews the history and principal tools of this synthesis in their biomathemati- 
cal and biometrical context and demonstrates their usefulness in a study of focal neuro- 
anatomical anomalies in schizophrenia. 
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1. Introduction. Over most of this century, techniques for quantitative 
geometric study of organic form have fallen under one of two incommensu- 
rate headings. In one style of analysis, deriving from the biometrics of Karl 
Pearson and Sewall Wright, conventional multivariate techniques are ap- 
plied to an undisciplined roster of quantifications of single forms. The only 
algebraic structures involved are those of multivariate statistics, limited 
mainly to partitions of sums-of-squares, diagonalizations of covariance 
matrices and solution of linear systems in which they are involved. No 
aspect of the geometric organization of the measures or their biological 
rationale is reflected in these statistical maneuvers. In particular, the 
geometry of the typical form plays no formal role in the analysis of 
variation. 

In the other class of shape analyses, often associated with the name of 
D’Arcy Thompson, but actually dating from the discovery of perspective 
transformations half a millenium ago, changes of biological form are 
visualized directly as distortions of Cartesian coordinate systems that carry 
meaningful biological labels right along with the coordinate grid. Such 
analyses are inextricably graphical; generation after generation of devoted 
amateurs failed to produce any rigorous grammar for the quantitative 
apersus to which they sometimes lead. 

The incompatibility between these two main styles of quantification 
derives ultimately from a discrepancy between two fundamental metaphors 
by which biomathematical abstractions can sometimes acquire biotheoreti- 
cal meaning. In the multivariate approach, prior biomathematical knowl- 
edge pertains to the quantities that characterize the single form. When 
forms are measured by ruler, for instance, it must simply be assumed that 
the inter-point separations are biotheoretically comparable; there is no way 
to test this axiom. In the second approach, comparability (called homology 
in this context) refers instead to the pairing of “corresponding” locations of 
bits of tissue; there is no practical way to test this axiom either. Whereas 
the first language makes no reference to biological processes, and thereby 
supplies no filter by which inappropriate comparisons might be suppressed, 
the second provides insufficient hints about the syntax of quantification, 
lacking, for instance, stategies for integrating descriptions across wide 
extents of a form or across the forms of a sample. 

These two analytic traditions were pursued separately right through the 
197Os, yet in the middle 198Os, without any premonitory ferment, the 
barrier between them was very rapidly breached by an unprecedented 
combination of algebraic and geometric tactics. 

The breakthrough began-as breakthroughs in quantitative science often 
do-when it was realized that previous attempts at a morphometric synthe- 
sis had been struggling toward the wrong goal. What constituted the 
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appropriate subject matter for analysis of forms with labels was not, as I 
erroneously (if understandably) claimed in Bookstein (19781, the construc- 
tion of a canonical coordinate system for D’Arcy Thompson’s grids, which 
apply to only two forms at a time. Those grids were an artifact. Efforts at 
improving their quantification only distracted from the far more important 
task of constructing a canonical manifold for biomathematically salient 
aspects of shape across extended samples. In the tangent space of that 
manifold, any vector becomes a potential “shape process” that summarizes 
evidence from a sample. Conversely, any pairing of forms, as of individual 
specimens with their common average, becomes a descriptor that, after 
projection onto the tangent space, can be aggregated with other commensu- 
rate descriptors, examined for patterns and associated with explanations. 
Within this shape space, trends can be named and their statistical reifica- 
tions can be assessed; the reliable diagrams that obtain of actual effects on 
real shapes are often very conducive to biomathematical insights. 

To combine biomathematical with biometrical aspects of biological shape 
studies, it is first necessary to demarcate the boundary between them. 
Neither biomathematics nor biometrics taken separately is capable of this 
degree of insight. In suggesting an elegant graphic for the biologist’s 
intuition of shape change, Thompson ignored the biometrics of shape 
description and shape variation. Conversely, in suggesting elegant tech- 
niques for the algebraic/statistical manipulation of shape descriptions, the 
multivariate school ignored the problem of making biotheoreticai sense of 
the abstract combinations so produced. Once we could recognize proto- 
types for biomathematically sensible description of quantitative effects 
upon biometric shape, the analytic tools so long sought could be generated 
and annotated almost as quickly as the community could assemble exem- 
plary data sets. 

As it happened, the modern discipline of morphometrics was synthesized 
over a mere five years. The original insight occurred more or less simulta- 
neously to three of us. (To the sociologist of science, that is a familiar signal 
that the field was ripe for metamorphosis.) At the same time that a paper of 
mine (Bookstein, 1984b) introduced two-point shape coordinates for trian- 
gles and showed how shape differences can be weighed by formal T2 test, 
Goodall’s (1983) dissertation derived the equivalent F-ratio while avoiding 
any size standardization. Meanwhile, Kendall (1984) announced the Rie- 
mannian structure of the global shape spaces, noting later, in one pregnant 
sentence, that my method, like Goodall’s, pertained to the tangent spaces 
to his shape manifolds. Our joint publication in the first volume of Statisti- 
cal Science (Bookstein, 1986, with commentary) signaled the convergence of 
all three of these notations upon one single foundation for the biometric 
analysis of landmark data in a biomathematically interpretable framework 
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of shape processes. This core of material has since been formalized further, 
in a different notation, in Goodall (1991). Meanwhile, one particular 
interpolation function-the thin-plate spline (Bookstein, 1989a)-turned 
out to support a feature space for these shapes in an uncanny way: A 
quadratic form, the computation of which involves only the mean landmark 
configuration, generates a biomathematically sensible basis for reporting 
and interpreting variations around that mean. 

The most extensive exposition of this synthesis is my monograph (Book- 
stein, 1991). However, the Procrustes underpinnings of the synthesis are 
not emphasized there as much as I now would. Several proceedings volumes 
(Rohlf and Bookstein, 1990; Marcus et al., 1993; Marcus et al., 1995; 
Mardia and Gill, 1995) provide links to more classical languages of biomet- 
rics, biomathematics, mathematical statistics and systematics. The field 
remains in desperate need of a book-length primer; maybe some intrepid 
reader of this essay will be inspired to draft such a volume. 

2. Biometric Analyses of Size and Shape Measures 
2.1. Historical background. The sturdy algebraic structure that is linear 

multivariate statistics encourages applications from population biology 
through psychology and into the social sciences. Ironically, its techniques 
typically have arisen in response to specific challenges of size and shape 
analysis. For instance, the first quantitative study of human development 
was de Montbeillard’s 1760 growth curve for the height of his son (see 
Boyd, 1980). Adolphe Quetelet relied on unsophisticated measures of 
height and weight to argue (quite fallaciously, of course) that normally 
distributed variates are generated by a single “true value” characterizing 
un homme moyen, a reified “average man.” Additionally, Francis Galton’s 
original example of regression fitted an ellipse to a cross-tabulation of 
height for 928 young men against the average of their parents’ heights. 
Following Duncan (19841, I would suspect all this owes to the origin of 
these thrusts in the need for “social measurement” well before the idea of 
biometric statistics could be formulated. Generals and tailors needed to 
understand human size variability millenia before quantitative biology was 
more than an eccentric hobby. 

Although all these were analyses of explicitly biometric data, the actual 
algebra of the techniques exploited (least-squares, correlations, fits to bell 
curves) does not articulate with any biomathematical models for the same 
data-the mathematics of cumulative height, for instance, as it is regulated 
by growth or inheritance. The power of biometric methods for broader 
applications is wholly by analogy. That multivariate analysis of covariance, 
for instance, works as well in political science as in agriculture owes to its 
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discarding the “bio” from the “metric” formalism at the outset. Outside of 
the specific morphometric context to be introduced presently, no multivari- 
ate biometric analysis offers any theory of where its measurements have 
originally come from. 

Very early on in the development of multivariate statistics, it was realized 
that biometrics typically segregates multivariate algebra from the biomathe- 
matical context of the underlying quantifications. Unfortunately, both Gal- 
ton and Karl Pearson subscribed to a mystical conflation of meaning 
between the fact of regression (that is, true, linear causation) and the 
convenient summary statistic of “co-relation.” Out of this confusion 
emerged the British school of eugenics that has embarrassed so many of us 
since then (see Bookstein, 1995e). “When the British race is at risk” was no 
time for subtle questions about process. A century ago Pearson’s colleague 
W. F. R. Weldon already was emphasizing the usefulness of a second 
formulation for pairs of biometric variables, such as alternate size measures 
of the same organism, in which the notion of causation was replaced by one 
of correlated response. The considerably different notion of “explanation” 
underlying this extension embodied the same least-squares logic for “com- 
bination of observations” that Gauss and Lagrange had worked out a 
century earlier (Stigler, 1986). That being so, the methods could be liber- 
ated from any biomathematical context, for instance, in G. Udny Yule’s 
1895 application of regressions for calibrating phenomena of social welfare. 

In light of this double meaning, the understanding of regression and 
correlation in theoretical biology remained obscure until clarified by Sewall 
Wright in the 1920s. His method of path analysis (see Wright, 1968) applied 
a consistent language jointly to studies of inheritance of quantitative 
characters and to studies of multiple characteristics of the single organism. 
In this biomathematical strategy, observed correlations are the algebraic 
composite of patterns of mutual determination of data by observed or 
unobserved factors. Correlation coefficients are thus epiphenomena of the 
path coefficients-the only quantities in sight with a satisfactory epistemol- 
ogy. Wright’s conception of the role of correlations in biometrics is still, in 
my view, the only coherent approach to their application in the biological 
sciences (see Bookstein et al., 1985, or Bookstein, 1991). 

While Wright was developing his rigorously causal models and enlarging 
their range to include the new abstractions emerging in population genetics 
by mid-century, the countervailing tradition of least-squares prediction was 
not dormant. Many intellectual developments sprang from the “general 
linear model” to play crucial roles in other areas of modern applied 
statistical practice, such as agricultural experimentation, econometrics, pro- 
cess control and psychometric test theory. None of these areas shares any 
theory with biomathematics nor are any of these extensions of Wright’s 
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methods of much use in biometrics. Meanwhile, yet another development 
was arising in the context of morphometric data. The locus cZussicus for 
discriminatory analysis is a data set of four size measures of iris flowers. 
Fisher, in phrasing his problem of “discrimination” as the maximization of 
a certain ratio of statistical likelihoods, once again sequestered the alge- 
braic core of the technique far away from any valid style of biomathemati- 
cal reasoning: on what linear combinations of floral traits, indeed, is it 
sensible to suppose that selection can operate? Extensions of this method 
by Hotelling (1936) and others likewise continued to ignore biomathemati- 
cal strictures while constructing the full range of canonical analyses of 
variance and covariance on which today’s journeyman statistician relies. 

By the 196Os, then, the biometrics of shape was entrapped in serious 
theoretical and practical difficulties. None of our techniques for shape 
analysis had any access to biomathematical theories. Our core statistical 
tactics-regression, factor analysis, canonical variates analysis-had arisen 
in the context of questions about shape, and yet in their current algebraic 
unfolding there was no possibility of any geometrical insights or interpreta- 
tions at all. The question of whether the algebra of covariance matrices and 
design matrices did justice to the biological hypotheses investigated with 
their aid could simply not be posed. 

For instance, the topic of Blackith and Reyment’s (1971) book h4ultivh 
ate Mophometrics, the first book to use the word “morphometrics” in its 
title, is actually the interpretation of matrix manipulations in vaguely 
functional biological terms. Variations in the metrology of morphometric 
data-lengths, angles, titres, proportions, in whatever combination-make 
no difference for these matrix mechanics: all quantities are thrown into the 
same crucible of canonical analyses and scatter plots. No discipline for the 
formulation of those variables could possibly arise in so pathological a 
context of tolerance. The authors of this canonical reference text saw no 
need to point out this lacuna or to include any diagrams dealing with the 
potential biomathematical meaning of their measures and their analyses. 

In retrospect the difficulty is obvious: no matter how elegant one’s matrix 
algebra, one cannot coherently interpret findings about size and shape 
without first saying what size and shape phenomena mean. From mid- 
century on, therefore, the occasional thoughtful biometrician attempted to 
modify the dominant matrix methods so as to encode some algebraic 
version of this biomathematical context. Easiest was the interpretation of 
size and shape that corresponded to one straightforward biomathematical 
model-ullometry, the dependence of shape change upon size change. 
Rather more subtly than Wright had, Jolicoeur (1963), Hopkins (1966), 
Bumaby (1966) and others interpreted allometry as a single-factor biomet- 
ric model, and suggested ways by which it might be calibrated using 
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empirical covariance matrices of log-transformed distance measures. Thus 
allometry can (sometimes) be not only detected but also described by 
variation of the coefficients of the first principal component of logarithms 
of size measures, analysis of “shape” can proceed (under fairly stringent 
conditions, and with limited power) using vectors of ratios of size measures, 
analysis of shape in a different sense, now no longer size-independent, can 
proceed by referring to residuals of the raw data from their allometric 
regressions and so on. This literature is summarized and assorted in 
Bookstein et al. (1985) and its semantics is dissected in Bookstein (1989b). 
Because single-factor models can be extended to distributions of indefi- 
nitely many measurements (as in classic psychometric test theory), it did not 
even matter that the dimensionality of such “size measures” was not finite. 

Still, by about 1980 most of us were deeply troubled by the apparently 
ineluctable mismatch between the matrix operations of the dominant 
tradition, however modified for applications to the “and” of “size and 
shape,” and the very reasonable sorts of questions about morphometric 
phenomena that had been asked of the raw data all along: where upon the 
organism, or its image, interesting patterns were to be unearthed, and 
whether sample covariance matrices offered any help in sharpening their 
detection and interpretation. 

2.2. A biometric shape space for landmark data. Our field escaped from 
this impasse by learning how to restore the biomathematical context to the 
problem of shape description in a strikingly simple and explicit way. We 
had all construed geometric sizes as the primary stuff of biometrics. This 
was partly because size variables came, more or less, in the same units 
(Mosimann, 19701, so that their linear combinations and logarithms made 
sense, and partly because, in practice, primary shape data were an inco- 
herent mass of form factors, angles and ratios subject to no apparent 
discipline. It had always been easier to treat this congeries as a family of 
flexibly derived descriptors emerging from subjective insight than as a 
“space” spanning some relevant finite-dimensional channel of biological 
description. 

Yet our visual systems already construe shape as a primary observandum. 
We are hard-wired to recognize shapes as equivalence classes of forms 
under motions of the head: pedestrian changes of distance toward an object 
and rotations of the cranium on the atlas vertebra. This representation is 
finite dimensional whenever the primary datum is finite dimensional. To 
assure finitude, it is easiest to revert to the set of endpoints of the same 
rulers that were already measuring lengths, and close those sets. This leads 
directly to a formalism of landmark configurations as primary data (Book- 
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stein, 1978, 1991). More formally, a landmark configuration is a discrete 
sample from a homology mapping across pairs of specimens, a labeled series 
of points that are each homologous over an entire sample of organisms. 
The biometrical shape of a landmark configuration is best taken, unambigu- 
ously, as the equivalence class to which it is assigned under the group of 
Euclidean similarity transformations. 

Multivariate statistics can be founded on interspecimen distances (cf. 
Gower, 1971) as easily as upon variables. This duality has long been 
recognized in particular applications, for instance, the interchangeability of 
“Q-mode” and “R-mode” factor analyses in psychometrics. Multivariate 
biometrical analysis of shape could postpone the generation of “variables,” 
then, by beginning instead with a metric for distances among shapes taken, 
exactly as the eye takes them, as equivalence classes. Such a metric, a 
“distance” between labeled point sets that is invariant against similarity 
transformations, had been under development for some time in connection 
with other diverse sciences of space: the Procrustes distance between two 
landmark configurations. In the small, this distance is the sum of squared 
ordinary Euclidean distances between corresponding landmarks after each 
configuration is scaled to unit Centroid Size (sum-of-squares around its own 
centroid) and then one of the pair is rotated and translated upon the other 
so that that interspecimen sum-of-squares is a minimum (see Fig. 1). The 
preferred formula (Sibson, 1978; Kendall, 1984) is a transformation of that 
sum-of-squares that gives the resulting quantity the correct metric proper- 
ties in the large. Specifically, for two-dimensional data it becomes identical 
to the Fubini-Study unitary-invariant metric for the ratios of k - 1 complex 
numbers. Select representatives of the equivalence classes as vectors of 
complex numbers zi with Czi = 0 and Cz,Z, = 1. Then the Procrustes 
distance between z and z’ is arccoslXziZil. 

Without any further geometry we can already begin to carry out biomet- 
ric analyses of shape. The average shape of a sample can be defined quite 
rigorously as the shape that has the least summed squared Procrustes 
distances to the individual shapes. Algorithms for computing this average 
are surprisingly simple. My favorite (Kent, 1994) is as the first principal 
component of the sample summed outer product Czz’, where zz’ is the 
k x k matrix whose ijth entry is ziZj. 

Kendall’s (1984) great paper about Procrustes metrics and shape showed 
that the equivalence classes of two-dimensional landmark configurations 
under the similarity group form a smooth (2k - 4)-dimensional manifold, 
the shape manifold Ct for k landmarks in two dimensions. Moreover, when 
shape distance is taken as exact Procrustes distance arccoslCz,Z:l, and only 
in that case, the shape manifold is the Riemannian manifold that expresses 
the original Euclidean geometry of the digitizing plane as partialed by the 
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Figure 1. Geometry of Procrustes fits. Upper row: Two forms with four land- 
marks. Center row: Each form is scaled to unit Centroid Size (sum of squared 
distances from the centroid to the landmarks). Lower left: The centroids are 
superposed and then one form is rotated over the other to a position of least 
squared differences between the homologues. Lower right: If the fixed form is a 
sample average shape (see text), vectors of displacement in Procrustes space, 
shown here as four scatters around the average (dots), serve as one set of shape 
coordinates for the sample of forms. These coordinates total eight (four sets of 
two), which is four in excess of the actual dimension of the shape space of a 

quadrilateral. 

action of the similarity group. That is, there is a shared geometry of shape 
space and the original Cartesian data such that shortest paths (geodesics) in 
the Cartesian space project down onto shape space as geodesics in the 
Procrustes metric there, circles around landmarks in the image plane 
project as circles around shapes in the shape manifold and so on. 

Associated with any Procrustes average shape is the graphic (Fig. 1, lower 
right) that superposes every specimen of the sample over that average. We 
pursue the multivariate statistical analysis of sampling variation around the 
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sample average by treating the set of deviations of each landmark from the 
corresponding sample average as a set of shape coordinates, biomathemati- 
tally promising measurements explicitly dealing with shape. In fact, the tie 
between these coordinates and the biometric notion of “variables” is closer 
than Kendall himself realized. In this representation, these coordinates 
have been removed from the shape manifold itself out to the tangent space 
to C’; at the averaged form just introduced. (This tangent space has 
dimension 2k - 4: the original 2k Cartesian coordinates, less 4 for the free 
parameters of the similarity group.) Do not imagine this tangent space 
“classically” as a flat geometric object touching the shape manifold the way 
a plane touches a sphere. Better, following the modern point of view, 
construe it as a linear space of one-forms (differentials), the best linear 
approximation to the geometry of scalar functions of points of the actual 
manifold “in the vicinity of’ a particular form. (The accuracy of this 
approximation as a function of diameter of a shape distribution is cali- 
brated in Appendix 2 of Bookstein (19911.) In the biometric context, if the 
tangent space touches right at the Procrustes average form, these linear 
functions are precisely what we mean by biometric shape variables. One 
visualization thus refers both to shapes and to shape variables-the dual 
construction-in the selfsame diagram. 

In this way, with Kendall’s help, we unexpectedly solved the problem that 
had loomed ever since the time of Pearson: The geometry of biometric 
shape variables for landmark data is the geometry of the tangent space to 
Kendall’s shape space at the average landmark shape. Shape coordinates 
are sets of directions in this tangent space-sets of shape variables- 
selected so as to represent each equivalence class of shapes once and 
otherwise for reasons of convenience or diagrammatic elegance. Because 
the tangent space itself inherits the Procrustes metric from the underlying 
manifold, in the vicinity of an average any shape variable specified by a 
formula, such as an angle or a ratio of two distances, has a Procrustes 
length per unit of shape value independent of its sample variance. Likewise, 
pairs of shape variables make a Procrustes angle independent of their 
sample covariance. (The Procrustes “length” referred to here-linearly 
extrapolated magnitude of the shape difference induced by a unit change in 
the linear combination under study-has nothing to do with actual sample 
range, which is normally 1 or 2 orders of magnitude smaller.) For triples of 
landmarks, this Procrustes geometry of variables was explored diagrammat- 
ically in Chapter 5 of Bookstein (1991). 

Because the tangent space in which we are representing shape is linear, 
any other set of shape coordinates that preserves Procrustes distance must 
derive from these by an orthogonal transformation. That is, for the multi- 
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variate analysis of landmark shape in the vicinity of an average shape to 
preserve the Euclidean geometry of the original data under the action of 
the special similarity group-for our biometrics to correspond closely 
enough to the ordinary vernacular meaning of “shape” for Cartesian 
coordinate data-the basis we use for the tangent space to shape space 
must be generated as a Procrustes-orthogonal rotation of the Procrustes fits 
to the mean shape. For biometric tactics to make sense in terms of this 
intrinsic geometry of landmark shape, shape coordinates must be the 
superposition of specimen shape on the sample average shape or a Pro- 
crustes rotation of those superpositions. This is the unique statistical 
geometry that underlies the morphometric synthesis: the a priori metric 
geometry of shapes of landmark configurations in Euclidean space. Fur- 
thermore, because the Procrustes metric is a submersion of the original 
Euclidean one (Kendall, 1984), the distribution of shapes in this tangent 
space is (very nearly) spherical whenever the distribution of the original 
landmarks is characterized by independent circular Gaussians of the same 
variance (Mardia, 1995). In other words, this shape space has no “privileged 
directions” regardless of the average shape. 

Figure 2 presents a typical example of the reduction of landmark config- 
urations to a shape scatter in this way. The data are eight landmark points 
on the brain cases of 21 rats observed in lateral radiographs as they grew 
from 7 to 150 days of age. For more information on this sample, see 
Bookstein (1991). Most of the shape coordinates show a clear age trend; 
their joint biomathematical interpretation will concern us in a moment. In 
this setup, the scatters of all the shapes of a data set as fitted to their 
average together exhaust the space of shape variation embodied in those 
Cartesian coordinates. Write these Procrustes-fit coordinates for the shape 
of a typical sample form as the 2k-vector F = (rl, sl, r2, s2,. . . , rk, sk), where 
the ith landmark is located at (ri, si) after the Procrustes fit. The x-coordi- 
nates provide the subvector F,,,; the y-coordinates provide the subvector 
F even. 

Figure 3 introduces a second data set likely of greater potential impor- 
tance: a set of 13 landmarks from nearly midsagittal magnetic resonance 
images of 14 patients with schizophrenia (of a variety of clinical types> from 
the Adult Psychiatric Unit, University of Michigan Hospitals, along with 14 
images from age- and sex-matched patients found not to warrant a diagno- 
sis of schizophrenia. The 13 landmarks generate points in a 22-dimensional 
shape space. Diagnosis was blind to these images, and the locating of 
landmarks (by Dr. John DeQuardo) was blind to diagnosis. For an interpre- 
tation of this finding in its neuropsychiatric context, see DeQuardo et al. 
(1995). 
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Figure 2. Shape space for eight landmarks from cephalograms of 21 rat skulls: 
Procrustes fit of all specimens to the grand mean shape, +, 7-day-old pups; 
X, 150-day-old rats. Other ages were 14, 21, 30, 40, 60 and 90 days. Inset and 

data are from Bookstein (1991). 

The Procrustes-fit coordinates of this sample (Figure 4) show much less 
local structure than the example for the growing rat skulls. The scatters, 
landmark by landmark, appear roughly circular and of the same radius. An 
enhancement of this plot, shown magnified for the central set of five 
landmarks, serves as a direct introduction to the problems of biometrical 
inference in high-dimensional data like these. The triangles represent 
shape coordinates for the schizophrenics; the dots, for the others. There 
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Figure 3. Nearly midsagittal brain scan of a normal subject, with 13 landmarks 
located. As numbered: 1, splenium of corpus callosum; 2, genu of corpus 
callosum; 3, uppermost point on upper boundary of arch of corpus callosum; 4, 
vertex; 5, tentorium at dura; 6, top of cerebellum; 7, tip of fourth ventricle; 8, 
bottom of cerebellum; 9, top of pans; 10, bottom of pans; 11, optic chiasm; 12, 

frontal pole (on the extension of a line from 1 through 2); 13, colliculus. 

appear to be differences between the groups in the fitted coordinates of 
landmarks 1 and 13, differences significant separately by Hotelling T* at 
p - 0.009 and 0.012, respectively. However, we selected these out of all 13: 
the Bonferroni-corrected probability is thus not significant even at the 10% 
level. Continuing with the inspection of the right-hand plot, we notice that 
the separation of those mean vectors by group seems to be in opposite 
directions between the landmarks. Indeed, the vector that connects the two 
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Figure 4. Procrustes registration for landmarks from 28 samples like Fig. 3 upon 
their average shape. Left: The complete data set of shape coordinates, rotated 
from radiological horizontal to align the longer principal axis of the average 
shape with the horizontal. Right: Enlargement of fits at landmarks 1,6,7,9 and 
13. Triangles, schizophrenic subsample. Apparent differences at landmarks 1 

and 13 are statistically problematic (see text). 

fitted landmarks shows a group difference significant by T2 at a level of 
0.004. However, we have selected this vector as one out of 13 X 12/2 = 78 
pairs, leading, again, to insignificance after Bonferroni correction. While it 
is implausible that the most discrepant pair of group differences would be 
situated at adjacent landmarks, nothing in the Procrustes multivariate 
machinery yet allows us to adjust our probabilities accordingly. In other 
words, the biometrics of these scatters does not yet articulate with such 
reasonable biomathematical descriptors of shape phenomena as “the dis- 
placement of a landmark” or “increase along a segment between two 
landmarks.” In fact, it is well known (Rohlf and Slice, 1990) that although 
the Procrustes-fit shape coordinates have the right sum-of-squares, the 
associated superposition, which is exactly what we are contemplating here, 
leads to misleading interpretations in most practical applications to shape 
processes. 

We will restore biomathematical cogency to these manuevers by passing 
from the Procrustes-fit basis of 2k coordinates to a very carefully selected 
new basis that has the correct number 2k - 4 of shape dimensions. If this 
change of basis is by a (Procrustes) rotation, the new basis will be orthonor- 
mal. Geometrically, this means a set of 2k - 4 directions that all have 
Procrustes length 1 and are pairwise Procrustes-orthogonal. Statistically, 
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these are sets of shape variables whose differences sum in square to 
squared Procrustes distance and such that, for variation by circular Gauss- 
ian distributions of the same small variance around each landmark of the 
mean shape, all have the same variance with all covariances zero. Although 
the formula for the Procrustes metric itself does not explicitly incorporate 
the mean landmark configuration in any way, we are free to take the mean 
shape into account in choosing which rotation to apply. One particularly 
useful Procrustes-orthonormal basis-the only one yet constructed, in fact 
-is the set of partial warps that arise as eigenfunctions of the thin-plate 
spline we will use to visualize shape changes as deformation. The next 
section introduces this flexible interpolant and the spectrum of its energy 
form. First, however, I will review the tradition from which this rotated 
basis ultimately arose. 

3. Biomathematical Studies of Shape Transformation 
3.1. Historical background. What we borrow from the biomathematics 

of shape change is, of course, the visualization by transformation grid. 
Although this idea is usually associated with the famous treatise On Growth 
and Form by the British naturalist D’Arcy Thompson (19171, it is actually 
hundreds of years older than that. The first “transformation grids” reflect 
efforts of Renaissance artists to comprehend the variability of the human 
forms that they were just beginning to reproduce realistically. Figure 5, for 
instance, assembled from Albrecht Diirer’s (1528) vier Biicher uon Men- 
schlicher Proportion, explores diverse types of “transformation grid,” both 
affine and localizable, in the effort to explore the limits of normal variation 
and the strategies of effective caricature. The semiotics is that of geometric 
perspective, but the information conveyed is wholly different: no longer the 
effect of a change of vantage-point, but a change of organism. 

This formal theme of shape transformation as the explicit object of 
biometric discussion was most clearly set forth in the famous Chapter XVII 
of Thompson (19171, “On the Theory of Transformations, or the Compari- 
son of Related Forms.” Thompson’s goal is distinctly old-fashioned and 
much too Platonic to articulate with biometrics without severe modifi- 
cation: 

[If] diverse and dissimilar [organisms] can be referred as a whole to 
identical functions of very different co-ordinate systems, this fact will 
of itself constitute a proof that variation has proceeded on definite and 
orderly lines, that a comprehensive ‘law of growth’ has pervaded the 
whole structure in its integrity, and that some more or less simple and 
recognisable system of forces has been in control. . . . 
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Figure 5. One head with a standard grid and 11 transformations onto other 
German types. From Diirer (1528), by permission. 
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Figure 6. Cartesian transformation, Diodon to “Orthagoriscus.” From Thomp- 
son (1917). 

In Thompson’s own examples, including the famous exemplar reproduced 
here as Fig. 6, the Platonic thrust of homogeneity clearly dominates any 
concern for realism. Thompson’s fond hope that these figures would reveal 
the origins of form in force (an assertion he meant literally) was never 
realized, and while several later generations of quantitative biologists were 
tempted by this graphical style, it proved never to lead to quantification in 
the global mode that Thompson had intended. As a consequence, this 
once-promising method underwent only “vicissitudes,” not development, 
from its publication in 1917 to its supersession in the middle 1980s by the 
biometrical graphics of the synthesis. For a historical review, see Chapter 5 
of Bookstein (1978). 

From the vantage point of 1995, all these earlier attempts at a biometri- 
cally quantifiable praxis of transformation grids can be classified by the 
nature of the compromises they made. The biometric point of view requires 
that we be capable of representing variation as well as central tendencies, 
that we be able to cover the full range of potentially meaningful descriptors 
and patterns in an even and “unbiased” fashion and that graphics are 



330 F. L. BOOKSTEIN 

supplied for those features both separately and in arbitrary composites. 
Prior to the synthesis, no modification of Thompson’s grids met these 
criteria to any greater extent than Thompson’s original suggestion did. 

For instance, Sneath and Sokal (1963) argued, by reference to very 
accurately drawn Cartesian transformations between holotypes of fossil 
marsupials, that such visualizations did not lead to “features” or to taxo- 
nomically valid measures of resemblance. A few years later, Sneath (1967) 
attempted to express these grids by coefficients of polynomial trend sur- 
faces approximating them, but those coefficients neither corresponded to 
any natural metric nor sustained any biomathematical interpretations over 
the figure of the organism. In the context of simple allometry, Huxley’s 
(1932) much earlier method of “growth-gradients” would occasionally lead 
to suggestive Cartesian transformation diagrams, but was limited to fields of 
extremely simple structure. My own early method of biorthogonal grids 
(Bookstein, 1978) provided a canonical coordinate system for Thompson- 
style grids but did not extend to any visualization of “standard error” or any 
other biometric aspects of the tensor fields so displayed, and had no vector 
structure (could not be added, multiplied or averaged). Oxnard’s (1973) 
displays of single principal components of multivariate size measures as 
grids dealt with biometrically well-characterized shape features but left the 
semantics of their biomathematical interpretation hopelessly obscure, at 
the mercy of whatever biomechanical analogies the investigator might 
imagine (e.g. the “craniolateral twist” of a primate scapula). Yet other 
methods, such as Lohmann’s (1983) “eigenshapes,” applied biometric algo- 
rithms to valid representations of outline shape but offered no channel by 
which findings could be interpreted biomathematically, that is, as pertinent 
to biological homologies. 

The earliest applications of tensor analysis in morphometrics, such as 
that of Richards and Kavanagh (1943), although effectively leading to 
interpretations of shape change in terms of developmental processes, did 
not permit group-level operations such as averaging or assessments of 
variation. The features displayed by later finite-element methods modeled 
after those early attempts, such as that of Lewis et al. (1980) or Bookstein 
(1984a), proved unacceptably dependent on a priori parcellations of the 
form into “elements,” a step that could not be carried out (and still cannot 
be carried out) in any biomathematically sensible way. Finally, just prior to 
the synthesis that is my main theme here, methods of Procrustes analysis 
were introduced solely in the form of plots like that in Fig. 2, without any 
semiotics for correlations among the positions of the points fitted severally 
and without reference to the possibility of orthogonal rotations of this 
tangent space. Absent that final step, disconnected sets of Procrustes-fit 
residuals do not conduce gracefully to allometric modeling and cannot be 
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matched to biomathematical explanations such as regional processes of 
regulation. 

In hindsight it is clear why the morphometric innovations of the 1950s 
through the early 1980s were so incoherent. There was no agreement about 
what constituted an appropriate analysis because there was no proper 
biomathematical understanding of what constituted the data. Oxnard’s 
(1978) review article, for instance, which dealt with data in the form 
of images, had nothing in common with the approach of Blackith and 
Reyment (19711, which treated only scalar variables previously extracted by 
ruler, planimeter or protractor. My first publications on the “method of 
biorthogonal grids” in the late 1970s incorporated no theory of how 
landmarks are chosen or how that choice affects interpretation of the grids 
that were produced. The task would better have been taken as representing 
the raw data (in this case, whole configurations of landmarks) in a space 
whose dimensions would be transformations, not with the depiction of 
single changes as transformations. On the other hand, my preliminary 
statistical method for triangles (Bookstein, 1982a, b), lacking only the 
corresponding distribution theory, never referred to vectors of variables or 
linear combinations, nor did it hint at any appropriate extension even to 
pairs of triangles, let alone to landmarks considered without lines connect- 
ing them. 

In short, none of us acknowledged that multivariate methods would not 
apply effectively to landmark data until a canonical way was found to make 
whole landmark configurations into “variables,” and none of us thought to 
pursue the analysis common to alternate visualizations rather than the 
argument that some visualizations were “better” than others. As an in- 
eluctable consequence of this methodological catholicity, the examples that 
appeared “successful’‘-that seemed to lead to biomathematically satisfac- 
tory explanations-had little in common. No practical advice emerged for 
matching techniques to data sets or to biological questions, and although 
we knew that different analyses applied to the same data set would usually 
result in incompatible findings, we had no protocol for choosing among 
them. In this way a good-sized roster of earnest workers-some amateurs, 
some professionals-circled around the solution that was to come, without 
ever realizing the crux of our collective problem. 

3.2. The thin-plate spline. Again, as with Kendall’s gift of shape space, 
what made the morphometric breakthrough possible was help from an 
unexpected quarter: a relatively esoteric advance in interpolation theory. 
Computer graphics had long been concerned with the lofting of surfaces 



332 F. L. BOOKSTEIN 

representing physical or sociological quantities measured over “scattered 
data.” Algorithms for smoothing these point observations into surfaces 
would often begin by promulgating a functional that the resulting interpola- 
tion was to optimize under the constraint of according with the given data. 
Several of us had already tried borrowing from this literature: Sneath’s 
(1967) trend-surface analysis imitated a technique effective in some geolog- 
ical mapping contexts, and my interpolation algorithm of 1978 was modeled 
on numerical solution of the Helmholtz equation inside a boundary of 
arbitrary shape. 

Even as these unsatisfactory experiments were in progress, two French 
mathematicians, Duchon and Meinguet, were recasting the interpolation 
problem in a new form: as the global minimization of a quadratic functional 
in the constraints of the interpolation. The mathematics of this minimiza- 
tion, it turned out, is identical to that for an unusually old problem in 
continuum mechanics-the bending of a metal plate subject to physical 
constraints. The literature of that problem (Timoshenko and Woinowsky- 
Krieger, 1959) had always expressed the resulting forms in infinite series. 
Most unexpectedly, Duchon and Meinguet managed to find one version of 
the problem for which the surface model that emerged can be expressed in 
very terse closed form. The technique generalizes to a variety of differential 
operators-interpolants minimizing any of a hierarchy of energy function- 
als-but it is the first element of the hierarchy which leads to analyses of 
the greatest interest for biology. For extensions of this specific application 
of the splines to smoothing problems, see, for instance, Wahba (1990). The 
same technique has also been extensively modified for application in 
computerized image analysis per se, well outside the biomathematical 
context. The following brief summary is taken from Bookstein (1989a). 

Let U be the function U(r) = r2 log r and let Pi = (xi, yi>, i = 1,. . . , k, be 
k points in the plane. U is a fundamental solution of the biharmonic 
equation: we have A2U a SC,, ,,), where 6 here is Kronecker’s function, zero 
everywhere except at the origin but with integral equal to 1, and A2 is the 
iterated Laplacian (d2/dx2 + d2/dy2j2. It can be shown (Timoshenko and 
Woinowsky-Krieger, 1959) that the equation of a thin, uniform metal plate 
originally flat and now bent by vertical displacements at various points is 
A*U = 0 except at points where force is applied. The equation presumes 
that displacements normal to the rest position of the plate are sufficiently 
small that strains in the plane of the plate itself can be ignored. The 
application to morphometrics rests on a scenario with no equivalent in the 
world of real plates: the displacement of an infinite metal plate at a finite 
series of discrete points in a world wholly lacking in gravity. 

Let the knots of the spline (later to be the landmarks at which we are 
calibrating the deformation of one biological form into another) be at 
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points Pi, i=l,..., k, in one single image. Writing qj = U(Pi - pi), build 
up matrices 

I 0 u,, .** 

u,, 0 *** u,, 
K=. . . . 

‘1 Xl Yl 

Q = : “.’ y.2 
. . . 
. . . 

,l xk Yk, 

and 

(1) 

(2) 

(3) 

where 0 is a 3 X 3 matrix of zeros. The thin-plate spline f(P) having 
heights (values) hi at points Pi = (xi, yi>, i = 1,. . . , k, is the function 

where 

f(P) = &U(P-Pl) +a,+a,x+a,y, 
i=l 

(4) 

w=(w, *‘* wk a, a, ~,)f=L-lH (5) 

with 

H=(h, h, *+. h, 0 0 0)'. (6) 

Note that the ws multiply copies of the kernel function U = r2 log r eval- 
uated with respect to each landmark in turn, while the coefficients a,, a, 
and uY calibrate the function “at infinity.” It is quite important for our 
morphometric applications that this vector W is linear in the data H of 
“heights.” 

Then the function f(P) has three crucial properties (Duchon 1976; 
Meinguet 1979): 

1. f(Pi) = hi, all i. (The function f interpolates the heights hi at the 
landmarks P,.) This is guaranteed by the first k rows of L. 
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The function f has minimum bending energy of all functions that 
interpolate the heights hi in that way: the minimum of 

(7) 

where the integral is taken over the entire picture plane. This quantity 
is also called (especially in computer graphics) the integral quadratic 
variation. The integrand is the sum of squares of all the second 
derivatives of the warping function. In that crucial detail these splines 
contrast greatly with other techniques, such as elastic relaxation, that 
minimize a functional of first derivatives. 
The value of this bending energy is 

where Lkl, the bending energy matrix, is the k X k upper left subma- 
trix of L-‘, and Hk is the k-vector (h, h, e-s hk) of “heights.” 

the application to two-dimensional landmark data, we compute two of 
these splined surfaces: one in which the vector H is loaded with the 
x-coordinates of the landmarks in a second form, and one for the y-coordi- 
nates. (The two interpolations use the same matrix L incorporating both 
Cartesian coordinates of the first form.) The resulting map (f,(P), f&P>> is 
now a deformation of one picture plane onto the other that maps land- 
marks onto their homologues and has the minimum bending energy of any 
such interpolant, and its bending energy is now the sum of terms for the 
x-interpolant and the y-interpolant separately, the form X’L, ‘X + Y ‘Lkl Y, 
where, temporarily, we write the coordinates of the landmarks in the target 
form as the pair of k-vectors (X, Y). 

This seemingly sterile algebra generates a remarkably cogent biomathe- 
matical rhetoric. The bending energy (8) that is a quadratic form in the 
landmarks of the “target form” is at the same time the integral (7) of 
quantities that are entirely local. The integrand of (71, although written in 
terms of second derivatives, is actually a summary of the gradients of the 
first derivatives of the quantities df/dx and df/dy: a summary description 
of the local rates of change of the local shape change tensor for “homolo- 
gous bits of tissue” over the whole image. The quantity is zero when 
neighboring bits of tissue change by identical shears, and grows as the 
effect of the transformation on line elements in any direction is graded 
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more and more sharply in any direction. That the integrals are taken over 
the whole plane, rather than the interior of the outline of a form, is an 
inconvenience, but only a minor one. A minimand that arises in classical 
continuum mechanics as an energy is nevertheless capable of being radi- 
cally reinterpreted in biomathematical language as a localization of shape 
change. The affine part a, + a,x + a,y of the spline, which makes no 
difference for the integrand here, is now an ordinary shear. In the metaphor 
of the lofted plate, this component can be thought of as an appropriately 
oriented shadow of the original gridded plate after it has been only tilted 
and resealed but not bent. The entire formalism is appropriately invariant 
against similarity transformations of either set of landmarks. 

(There is an alternative derivation of the thin-plate spline interpolant 
that identifies the minimand in (7) with a different quantity, statistical 
rather than biomathematical: the within-image prediction of a random field 
observed at one set of landmarks and taking values there corresponding to 
locations of the other set of landmarks, when prediction is by the variance- 
minimizing technique of kriging. The equations of the spline can be 
rederived in identical form from this quite different starting point if one 
models the prediction between landmark locations as the expression of a 
Gaussian random field with covariance function r2 log Y, which can be 
generalized to fractional powers of r. See Kent and Mardia (19941.1 

The mapping function from landmarks to landmarks remains linear in 
the target two-vectors (X, Y). Should those be shape coordinates in the 
sense of the previous section and the starting form of the spline be a 
sample average shape, then we have extended the linear machinery of 
shape space to a system of coefficients (the Ws) and thence to a diagram 
that visualizes the relation of any specimen shape to the average as a 
deformation, the coefficients of which are linear in its shape coordinates. In 
this way Cartesian grids about the average shape have been incorporated 
into the biometric framework in toto, as a direct visualization of one 
particularly specialized set of linear descriptors. 

The analysis of any landmark data set typically begins with scrutiny of 
single grids of this type. For instance, the summary grid transformation in 
Fig. 7 visualizes the Procrustes average shape of the landmark configura- 
tions for the schizophrenics in Fig. 3 as a deformation of the Procrustes 
average for the other cases. Its form immediately suggests a meaningful 
interpretation. The visible strain of the grid lines seems limited to the 
vicinity of the triangle among landmarks 1, 6 and 13 just right of center. 
(This is the same region upon which we focused in the analysis of Fig. 4.) 
The anatomical space indicated by this triangle (recall Fig. 3) is the 
posterior curve of corpus callosum where it separates the third ventricle 
from the cistern of the great cerebral vein (Netter, 1989, plate 103), a pool 
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Figure 7. Thin-plate spline for deformation from the average nonschizophrenic 
shape to the average schizophrenic shape from Fig. 4. The feature to which the 
eye is drawn-the site of the apparently focal deformation just right of 
center-spans the splenium of corpus callosum and the cistern of the great 
cerebral vein in Fig. 3. This region appears expanded, whereas the region to its 

left, the vicinity of the thalamus, appears compressed. 

of cerebrospinal fluid outside the main ventricular system. The organization 
of this figure permits the biomathematical interpretation at which Fig. 4 
could only hint. A rigorous test for the statistical significance of this 
apparent difference will be introduced in subsequent text. 

In terms of the geometry of shape space, what we have done in this 
example is to follow a very tempting shortcut. The mean difference between 
the groups of shapes was computed biometrically: as a vector in the tangent 
space corresponding to Fig. 4, not as a grid. However, its visualization by 
the method of grids leads us to realize that, by itself, it is already a 
biomathematically meaningful (i.e. localizable) feature of shape difference: 
a promising locus for neurophysiological explanation. We shall see in 
succeeding text that this visual signal (which may be of considerable 
medical interest) corresponds to the only biometrically significant finding 
that can be produced by any of the methods of the synthesis. One often 
finds that a single thin-plate spline display, if carefully crafted, can encom- 
pass the import of a whole data set in this way. 
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3.3. Eigenvectors of bending energy. Usually an investigator is not this 
lucky right at the outset. The more reliable channel by which the spline 
generates biomathematically sensible reports of shape phenomena is wholly 
different: a peculiarly useful rotation of Procrustes-fit coordinates its sup- 
plies for decomposition of more general shape phenomena into parts each 
capable of a biomathematical interpretation separately. Specifically, the 
elements of the most useful basis known for biomathematical interpretation 
of shape processes are the eigenvectors of the bending-energy matrix L;’ 
already introduced. This proposition, the other major formalism underlying 
the morphometric synthesis, is far from obvious, although it is elementary. 
It seems unreasonable that a strategy for minimizing a metaphorical 
“energy” in comparisons of forms two at a time would contribute anything 
important to descriptive techniques for variation and covariation across 
samples. To understand how this deep tie comes about, we must inspect the 
algebra and geometry of spline fits somewhat more closely. 

Figure 8 shows a variety of diagrams which, although appearing variously 
to be surfaces and deformation grids, are actually all thin-plate spline 
interpolations for four landmarks beginning in the form of a square. For a 
square of side 1, with landmarks ordered circumferentially, the bending- 
energy matrix (equation (8)) is 

1 0.3607 - 0.3607 0.3607 - 0.3607 \ 

Lkl= 
- 

0.3607 0.3607 
- 

0.3607 0.3607 
0.3607 0.3607 0.3607 -0.3607 

* (9) 
- 

\ - 0.3607 0.3607 - 0.3607 0.3607 / 

This matrix has rank l-it is a multiple of the outer product of the vector 
(0.5, - 0.50.5, - 0.5) with itself. Because this vector is an eigenvector of 
L;‘, it is immaterial whether we treat it as a set of coefficients or instead, 
as in the upper left panel of the figure, as a set of heights themselves to be 
splined: a surface lofted over the landmarks, raised at the endpoints of one 
diagonal of the square and lowered at the endpoints of the other. 

That splined interpolant, which of course looks like a physically reason- 
able bent sheet (since that was the actual subject of the original physical 
model), serves in our biomathematical context as one example of a biomet- 
rically useful transformation grid. The eye is fooled (as the viewing eye of 
Cartesian transformation grids is always susceptible to being fooled) by a 
visually dominant affine component that is quickly, if inappropriately, 
construed as evidence of tilt in “space.” If we reduce the magnitude of that 
component by rearrangement of the landmarks on the right, we see how 
the same formalism supplies a solution to D’Arcy Thompson’s Cartesian 
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Figure 8. Thin-plate splines of a square. Upper left: The sole principal warp for 
this configuration. This is the form assumed by an idealized (infinite, uniform, 
infinitely thin, originally perfectly flat) metal plate were it raised over the ends 
of one diagonal of a square, lowered over the ends of the other and otherwise 
left free to deform without any pull of gravity. Upper right: A projection of that 
gridded surface for which “up” and “down” align with the diagonals of the 
square: deformation of square into kite. Lower left: Another projection, with 
“up” and “down” now along one set of sides of the square: deformation of 
square into trapezoid. Lower right: Pointwise, the spline is independent of the 
orientation of the starting grid. This is the same mapping as that at upper right. 

problem: a grid transformation that accords with landmark positions and 
that uniquely satisfies a well-defined optimal criterion. In this case (upper 
right), we have projected the two-up-two-down configuration along a 
diagonal of the square, resulting in the grid for a square-to-kite transforma- 
tion. 

Surfaces like these can be projected down onto the plane of the square in 
any orientation. When projected along a side of the square instead of along 
a diagonal, for instance, this same surface leads to the square-to-trapezoid 
map shown at the lower left. “Up” and “down” are now aligned with a side 
of the square, not the diagonal. The starting grid can be rotated upon any 
of these surfaces, as shown at lower right, without altering the interpolation 
mapping. 
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Changing the shape of the starting form alters the matrix Lk’, its 
eigenstructure and the shapes of all these surfaces. A quadrilateral with 
three landmarks collinear, for example, generates the principal surface 
shown lofted at upper left in Fig. 9. Minimum-energy landmark rearrange- 
ments can derive from it by projections along or athwart the collinear edge 
(Fig. 9, lower left, lower right). The noncollinear landmark has nothing to 
do with this energy; it only affects the affine part of the spline analysis (the 
apparent “tilt” of the surface, the shear of the homology mapping). 

In general, because of the matrix Q appearing in the assembly of L 
(equation (3)), the bending-energy matrix Lkl has three eigenvectors of 
eigenvalue zero, corresponding to the three-dimensional family of planes 
over any landmark configuration. There remain k - 3 dimension of nontriv- 
ial bending above k landmarks, spanned by the nonzero eigenvectors of the 
bending-energy matrix. These nonzero eigenvectors, such as the eigenvec- 
tor (0.5, -0.5,0.5, -0.5) of the matrix (9), are called principal warps. Any 
splined surface is the superposition of one multiple of each eigenvector, 
together with a tilt term. If we notate the usual eigendecomposition as 
Lkl = UDU’ with U orthogonal and D = diag(e,, . . . , ek_3, O,O, 01, the prin- 
cipal warps are the first k - 3 columns ui, . . . , uk_ 3 of U. (This part of U 
will be denoted U_,.> As in Figs. 11 and 14 to come, each is visualized by 
loading its coefficients into the slots wi of equation (4) and then setting a, 
and aY to values that lead to a congenial view. 

Figure 9. Thin-plate splines of a collinear quadrilateral: isosceles right triangle 
and the midpoint of the hypotenuse (not shown). Upper left: One view of the 
sole principal warp. This view also serves as one partial warp. Lower row: Two 
canonical partial warps (aligned with the principal moments of the starting 
landmark configuration): left, horizontal; right, vertical. These correspond to 
views of the surface above from vantage points at suitable azimuths westerly 

(left) and northerly (right). 
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To each column ui of U corresponds not only a three-dimensional 
surface but also a projection “down” onto the picture plane that captures 
its role in the spline from the mean to each individual form of a data set. 
The contribution is a vector of two components: one, u:X, for the x-coordi- 
nates of the target form; the other, u:Y, for the y-coordinates. This paper 
concerns only the two-vectors that are generated when those coordinates 
are the Procrustes-fit coordinates F of the shapes of a sample. The partial 
warp scores are then two-vectors (u:FOdd, u:F,,,,). The whole set can be 
assembled in the vector (U_, @ I,)‘F, where I2 is the 2 x 2 identity matrix. 
The spline map remains the sum of all the partial warps interpreted as 
mappings (that is, the sum of all the displacements they induce at each 
landmark, grid intersection, etc.), together with an affine term. 

Like the spline itself, the partial warps have a biomathematical interpre- 
tation. They are “normal modes” for the localized description of shape 
processes. As eigenvectors of bending energy, they represent component 
processes that are orthogonal both in terms of shifts in landmark coordi- 
nate and in terms of energy. The partial warps, in other words, superpose 
without interaction. They decompose empirically encountered shape 
changes in the same way that Fourier components decompose periodic 
signals, that Bessel functions decompose the shapes of a kettledrum and 
that the principal warps decompose empirical surfaces lofted over land- 
marks. Intuitively, metal plates are more difficult to bend as the points at 
which forces are applied move closer together. Eigenvectors of higher 
specific bending energy entail discrepant rearrangements in small neigh- 
borhoods of landmarks; those of lower specific bending energy, rear- 
rangements widely distributed over the form. It is reasonable to suggest, 
therefore, that these eigenvectors, ostensibly computed in order of specific 
bending energy, actually extract a series of shape phenomena in a hierarchy 
of localization, the same concept we used to interpret the bending-energy 
formalism, integral (7). The affine term is not localized at all in this sense, 
and so its bending energy of zero is consistent with the hierarchy. 

A quincunx of landmarks (the five-spot of a die) has two principal/ 
partial warps, for instance, as shown in Fig. 10. The upper principal warp, at 
larger scale, is the two-up-two-down surface-relative displacement of the 
diagonals-we have already seen. The central one, at smaller scale, repre- 
sents the displacement of the central landmark over a background of the 
others, as can be seen directly from its expression in Procrustes-fit coordi- 
nates in the right column. ‘Notice that this pair of warps conduces to two 
different styles of biomathematical interpretation even though they are 
algebraically entirely analogous. Any rearrangement of the quincunx is the 
composite of two-vector multiples of these, along with an affine term. For 
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Figure 10. Principal warps of a quincunx. Upper row: the less bent; middle row: 
the more bent. The equivalent Procrustes displacements (drawn at right) ex- 
press the principal warps as linear combinations of Procrustes-fit shape coordi- 
nates, and so remain approximately at Procrustes superposition. Bottom left: 
The affine-free transformation for which these figures are the partial warps. 
Bottom right: The same with an affine term, equivalent to another view of the 
surface at the left. Both of the upper shape changes are of squared Procrustes 

length 0.1; hence the warp at lower left has squared Procrustes length 0.2. 

instance, the spline at the bottom right is the sum of the two partial warps 
shown, together with a small shear. 

Of the eigenvectors ui of the bending-energy matrix Lk', those that 
have nonzero eigenvalues are extrema of bending energy for constant 
sum-of-squares of heights above the base plane. The remaining eigenvec- 
tors u~_~, uk_ 1 and uk, of zero bending, can be taken as the columns of Q, 
equation (2); they merely translate single coordinates or dilate along 
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Cartesian directions. Because these dimensions span the similarity transfor- 
mations in the vicinity of the identity, the nonzero eigenvectors of bending 
energy lie within the tangent structure to shape space we introduced in 
section 2.2. The nontrivial partial warps, when applied to a Procrustes mean 
form, generate forms that are still in Procrustes registration with it; that is, 
the partial warps generate a space of shape variation. In fact, their 
orthogonality as eigenvectors of Lkl corresponds to orthogonality in the 
Procrustes geometry. Then these first k - 3 principal warps, originally 
characterized as extrema of bending energy with respect to Cartesian 
landmark displacements, in fact are extrema of bending energy with respect 
to Procrustes length in shape space as well: normal modes of shape 
variation per se. That is, 

the nonzero principal warps of the bending energy matrix in Cartesian 
coordinates are an orthonormal basis for describing shape variation in 
the tangent space of shape coordinates. 

By this most unexpected connection, the thin-plate spline, via its bending- 
energy matrix, has supplied us with an orthonormal basis for shape space 
that makes explicit the hierarchy of localized biomathematical interpreta- 
tions encoded in the landmark spacings of the average shape. 

Partial warps serve as the long-sought bridge between biomathematics 
and biometrics, the core of the morphometric synthesis: they are at once 
biomathematically sensible features of shape processes and elements of a 
biometrically orthonormal basis for shape space. No other orthonormal 
basis has been suggested for this space. To be useful in this application, 
furthermore, such a basis would need to have a natural quadratic form like 
equation (8) and a natural biomathematical interpretation like that in 
equation (7). In particular, the skew bases, such as two-point shape coordi- 
nates (Galton coordinates), permit statistical tests of exogenous associa- 
tions with shape, but are not consistent with any natural shape metric 
whenever there are more than three landmarks in general position. (See 
the discussion in connection with Fig. 16.) 

These partial warp scores (uiFOdd, u:F,,,, ) total 2k - 6 shape coordinates, 
but we know that a total of 2k - 4 are required to span the tangent space 
to shape space at any interesting shape. The two remaining dimensions 
span a uniform subspace of our tangent space, the set of shapes that derive 
from the average shape by affine transformations leaving parallel lines 
parallel. Properly speaking, these transformations apply up in the covering 
Cartesian plane, and must be followed by a Procrustes fit back into 
alignment with the original mean form. Let the Procrustes mean form, 
scaled to Centroid Size 1 and oriented with principal axes horizontal and 
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vertical, have coordinates (x1, yi), (x2, y2), . . . , (xk, yk) and let (Y = Xx,” and 
r=Cy: be th e principal moments along those axes. I verified (Bookstein, 
1995a; see also Mardia 1995) that one orthonormal basis for the uniform 
subspace, which thereby completes a full set of 2k - 4, is the pair of 
Procrustes-unit vectors 

un: = ((cuy,,yx,),(aY,,Yx*),...,(aY,,YXk))/‘Jcuy, 

Un;=((-yx,,ay1),(-YX~,LYyZ),...,(-YXk,CYYk))/~. (lob) 

These vectors are of unit length and are orthogonal to one another and to 
every principal warp of nonzero eigenvalue of the matrix Lk’. The first of 
the vectors corresponds to Cartesian shears aligned with the x-axis; the 
second, to Cartesian dilations along the y-axis. For the formulas to follow it 
will be convenient to unify these two expressions in one 2k X 2 matrix Un. 
Of course, like every other construction in this tangent space, the orthogo- 
nality is exact only in the limit of small shape variation. 

In this way a complete orthonormal basis for shape space in the vicinity of 
an average form is produced solely from the Procrustes mean form via the 
spectrum of its bending-energy matrix. Figure 11 shows this basis for the 
data set of rodent calvarial landmarks introduced in Fig. 2. The uniform 
terms, sharing the upper left corner, are those of formulas (10): horizontal 
shear and vertical dilation. The other terms are represented by lofted 
surfaces. The 2k - 4 dimensions of shape space are spanned by k - 2 pairs 
of these coordinates, as in Fig. 12: one pair for the uniform subspace and 
another for each partial warp. These are computed as consecutive pairs of 
the vectors (U_, @ I,)‘F, together with the single pair of scores Un’F, as F 
varies over the Procrustes-fit coordinates of the sample of shapes, Fig. 2. 
Again the youngest age is coded +, the oldest, X. These six pairs of 
coordinates are a rotation of the eight pairs in the earlier figure, a rotation 
leaving interspecimen shape relationships invariant. The dimensions annihi- 
lated are those corresponding to the (linearized) constraints of the Pro- 
crustes fit to the mean. While in any finite sample they appear to have some 
small variance, those four dimensions could never be used for any multi- 
variate procedure that involved matrix inversion (Bookstein, 1995b). The 
rotation to the partial-warp basis eliminates any danger of normalizing any 
of these dimensions by mistake. 

For this data set, such a display is enormously more suggestive of a 
biomathematical interpretation than the unrotated version in Fig. 2. In- 
deed, the new figure more or less vitiates the need for any further 
biometrical analysis. The uniform term (upper left) indicates that although 
the net effect is clearly a relative reduction in height of the braincase, the 
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Figure 11. Principal warps for the grand mean rat calvarial form, Fig. 2. Upper 
left: Uniform components, equations (10). Other panels: Principal warps of 
nonzero bending, plotted, arbitrarily, at squared Procrustes length 0.036. b.e. 

development of this neurocranium divides cleanly into two epochs. The 
change of direction occurs at the cessation of brain growth, about 30 days 
of age. Before that age, growth is aligned with the direction of greatest 
growth of the brain itself. However, none of the localizable aspects of this 
growth process (displayed in the other five panels of the figure) participate 

denotes specific bending energy. 
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Figure 12. Partial warp scores for the rat data, in the same order of panels as in 
Fig. 11. These six pairs of shape coordinates are a Procrustes rotation of the 

eight pairs in Fig. 2. + , 7 = day-old pups; x , 150-day-old rats. 

in this rearrangement mid-development. Except for that uniform term, 
every partial warp is consistent with regulation of form by one single factor: 
systematic “orthocephalization” (straightening of the cranial base angle, 
observed more completely using landmarks further forward) together with a 
highly localized reconfiguration of the occipital joint. An ordinary (un- 
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Figure 13. First unscaled principal component or the data in Fig. 12, excluding 
the uniform component. Left: As a thin-plate spline (equivalently, a superposi- 
tion of partial warps) for 2 standard deviations’ worth of change from the 
average shape. Right: As a set of displacements Procrustes-fit to the same 

average (the coordinates of Fig. 2). 

scaled) principal component analysis of the last five panels of these shape 
coordinates confirms that one component explains 83% of all 10 dimen- 
sions of Procrustes variation. The other dimensions are effectively spherical 
error-the second nonuniform principal component explains only one- 
twentieth as much Procrustes variance as this first one. Drawn as a spline 
(Fig. 13), the interpretation of this single “growth factor,” representing the 
entire period of growth in the nonlinear subspace, is obvious: a local 
rearrangement at occiput superposed over a square-to-trapezoid transfor- 
mation oriented along the couple of cranial base and vault. This visualiza- 
tion improves upon the separate displays of Fig. 12 (again, excluding the 
panel at upper left) about as much as Fig. 12 already improved upon Fig. 2, 
the original display of Procrustes-fit coordinates themselves. Notice, for 
instance, the conversion of the variance at lower right in Fig. 12 into the 
“pinching” at upper left in the grid, the main feature of the corresponding 
principal warp (Fig. 11, lower right). This example is discussed in more 
detail in Bookstein (1991). 

The achievement of biomathematical enlightenment does not always 
dispense with biometric analysis so straightforwardly. Figure 14 presents (as 
lofted surfaces) the 10 nontrivial principal warps for the shapes in the 
schizophrenia data set, all drawn to the same Procrustes length. The 
specific bending energies here vary over more than 1.5 orders of magnitude, 
from 3.25 to 148. Notice how the first few very smoothly deal with 
large-scale aspects of the bending of this shape (compare that at the upper 
left, for instance, to the corresponding panel in Fig. 11). The last few, 
conversely, are rearrangements of successively smaller features of the form, 
ending with the smallest triangle of landmarks. The sample scatters of the 
28 specimens on the corresponding partial warps, preceded by the uniform 
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Figure 14. Nonuniform part of the orthonormal shape basis at the mean 
midsagittal brain landmark configuration, Fig. 4. All 10 principal warp surfaces 
are drawn at squared Procrustes length 0.036. Both apparent roughness and 

apparent localization clearly increase with specific bending energy. 

component, are shown in Fig. 15. As before, shape coordinates for the 
schizophrenics are indicated by triangles. Notice the unexpected evenness 
of Procrustes range across the directions and the scales of these warps. The 
uniform term accounts for only 26% of the total Procrustes variance, and 
the first partial warp is not substantially more variable than several others 
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Figure 15. The most useful Procrustes rotation of Fig. 4: the uniform compo- 
nent and the 10 partial warp scores of the brain data set. Triangles, schizophren- 

ics; dots, non-schizophrenics. 

at smaller scale. Unlike the situation in Fig. 12, there is not yet any obvious 
biomathematical finding here. 

4. The Biometrics of Landmark Locations: Tests and Diagrams. Those 
are all the tools necessary for biomathematical-biometrical analysis of 
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landmark data. The purpose of this paper is to familiarize the reader with 
this bridge between biomathematics and biometrics, not to explore the 
neuroanatomy of schizophrenia. Hence discussion here is limited to two 
further examples: a biometric significance test for the biomathematically 
suggestive feature visualized in Fig. 7 and a biomathematically sensible 
version of the familiar biometrical tactic of ordination (Reyment, 19911-a 
helpful heuristic for the detection of potential patterns at small scale. 

For testing linear hypotheses about the independence of shape from 
exogenous factors (such as Centroid Size or a grouping variable), any 
full-rank set of 2k - 4 linear combinations of the 2k Procrustes-fit coordi- 
nates is as good as any other: all yield equally reasonable approximate 
descriptions of exogenous covariances with shape, whether or not the basis 
is orthonormal (i.e., whether or not Procrustes distances are preserved). 
One very convenient set of such skew coordinates is the set of two-point 
shape coordinates, complex affine ratios (4 -pl)/(p2 -pl) that represent 
the position of all the other landmarks q, one at a time, after two in 
particular (pl and p2) have been rotated, translated and scaled specimen 
by specimen to (0,O) and (1,O). I thought I introduced these coordinates in 
Bookstein (1984b, 1986) for the general testing of linear hypotheses about 
shape, only to learn belatedly that Francis Galton had published the same 
construction three-quarters of a century earlier, in 1907 (see Pearson, 
1914-1930, Vol. 2, p. 32_5), in connection with a scheme for telegraphy of 
facial profiles of criminals. Up through terms of first order in shape 
variance, any rigid triangulation of a set of landmarks, totalling k - 2 pairs, 
supplies an adequate basis for this purpose (Bookstein, 1986). 

Figure 16 shows the coordinates of the remaining 11 landmarks of the 
schizophrenia data set to a baseline from optic chiasm (11) to colliculus 
(13). In general this is a poorer superposition than that of Fig. 4, as most 
landmark-specific scatters are larger. At right is an enlargement of the 
distribution of splenium (1) in this superposition, with the pairs for the 
schizophrenics marked by triangles. There are clearly distinct mean tenden- 
cies for the two groups in this scatter-Hotelling T2 is significant at 0.0035, 
somewhat more persuasive than the corresponding findings in Fig. 4. The 
additional precision arises because the “reference size” against which this 
shape separation was constructed is the baseline for the shape coordinates, 
itself fairly localized, instead of the globally estimated Centroid Size (Fig. 1, 
middle row) that applied to scale the set of Procrustes-fitted coordinates as 
a unit. The appropriate Bonferroni correction is a factor of approximately 
11, not the 78 we needed before, because the 11 shape-coordinate pairs 
together span the 22-dimensional shape space. 
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Figure 16. Shape coordinates for the brain data set to a baseline from chiasm to 
colliculus (landmarks 11 and 13 in Fig. 3). Left: full shape basis; right: enlarge- 
ment of the coordinates of splenium (landmark 1). The central tendency of the 

schizophrenics (triangles) is clearly different from that of the others. 

When sample sizes are small, as is the case here (“small” means, roughly, 
“fewer cases than four times the number of landmarks”), it is often helpful 
to exploit a statistic that involves no such selection or correction. The 
distributions of these shape coordinates inherit a good deal of symmetry 
from symmetries in the original landmark distributions. If, for example, the 
landmarks were generated by independent and identically distributed circu- 
lar Gaussian perturbations around any mean configuration, then the distri- 
bution of derived shapes in shape space is spherically symmetric in Pro- 
crustes distance (Mardia and Dryden, 1989; Goodall and Mardia, 1991). In 
concentrated data, this symmetry extends into the tangent-space projection 
as well (Mardia, 1995). If the actual distribution of shape coordinates for 
one’s sample looks not too far from spherical-individual shape-coordinate 
pairs reasonably circular, partial-warp scores not too correlated-this so- 
called null model may be plausible. The orthogonal sections in Fig. 15 are, 
for this sample size, remarkably close to circularly distributed with the same 
radius. It may therefore be appropriate to compare the observed Procrustes 
distance between group means with its expectation on this null model as an 
F-ratio (Goodall, 1991, p. 314). On this null model, in the limit of small 
variation, the quantity 

N,+N,-2 IlFl - &II2 
N;'+N,-' C gro”ps,casesII~ -m* (111 



THE MORPHOMETRIC SYNTHESIS 351 

is distributed as the statistician’s F2k_4,(2k_4XN,+N,_2j, where N1 and N2 
are the two group sample sizes, F1 and F2 are the group average shapes in 
the common (pooled) Procrustes registration and I(* II2 is squared length. 
The denominator of the expression in the distances is the sum of all 
squared Procrustes residuals over landmarks and cases. 

In the data set here, the squared Procrustes distance between the two 
group average shapes is 0.00144, and the complete set of 364 squared 
Procrustes residuals from the appropriate group means totals 0.1389. The 
corresponding F-ratio is 1.892 on 22 and 572 degrees of freedom; it is 
significant at p N 0.01. In this way the biomathematical finding of Fig. 7 is 
finally issued an appropriate formal biometrical certification of (im)plausi- 
bility on a null hypothesis. Other Bayesians and I are aware that this 
computation is unrelated to any rational approach to scientific reasoning, 
but editors have come to expect it. 

The orthonormal basis for shape space that is a part of the standard 
morphometric toolkit is the set of partial warps (U_, @ I,)‘F, together with 
a “zeroth” (uniform) component Un’F, for which the entries of Lkl (and 
hence U_,) and the coefficients of equation (10) derive from the numerical 
values of the sample mean shape. Because ordinations of this basis cover 
the directions of shape space evenly, we can use it to search for directions 
of excess shape variance in a manner unbiased by differences in the 
Procrustes lengths and Procrustes angles of the diverse distance ratios, 
interlandmark angles and so forth, that would otherwise be used. (Recall 
the discussion of Section 2.) A variety of principal-component strategies, 
collectively known to the morphometric fraternity as relative warps analysis 
(Rohlf, 1993; Bookstein, 1995b), may be mounted using subsets of this 
single basis. I have already demonstrated one version of this analysis-the 
principal component analysis of the full Procrustes-fit coordinate set, which 
is equivalent to a principal-coordinates analysis of all pairwise Procrustes 
distances among the specimens of the sample. This initial exploratory tool 
proved definitive for the growing rat skulls, but unhelpful for the 
schizophrenia data. 

It is often useful to modify this analysis in the direction of greater 
biomathematical content, by scaling the partial warps by some power a of 
the bending energy before submitting them to principal components analy- 
sis. The new shape basis (U_, diag(e,: (r/2) CZJ I,)‘F is still orthogonal but is 
no longer orthonormal in the Procrustes geometry. The modified analysis 
incorporates specifically biomathematical analytic strategies as follows. By 
underweighting the principal warps in proportion to specific bending energy 
(the case (Y > O), we alter the Procrustes ordination to emphasize large-scale 
aspects of the shape change regardless of the distribution of landmarks at 
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medium and small scales. Analyses like these are important in studies of 
growth gradients and of phenomena, such as biomechanical influences, 
likely to manifest themselves mostly at large scale (see Bookstein, 1991, 
section 7.6). By overweighting the elements of our previously orthonormal 
basis in proportion to specific bending energy (the case (Y < O), we alter the 
Procrustes-orthonormal ordination to more heavily weight discrepancies 
between landmarks at close spacing (changes on the partial warps of 
smaller geometric scale). The analysis of Procrustes distance itself uses no 
such correction: cy = 0. Other values of cx require us to jettison the uniform 
subspace. 

The case (Y = - 1, in which squared Procrustes length is scaled by exactly 
the first power of specific bending energy warp by warp, seems natural for 
neuroanatomical explorations, inasmuch as small-scale anomalies can have 
very large effects upon behavior. It also incorporates the collective wisdom 
of the neuropsychiatric literature: were large-scale anomalies of form to 
explain the bizarrerie of schizophrenia, they would have been uncovered 
decades ago. The (Y = - 1 computation reduces to a principal coordinate 
analysis of bending energy in place of Procrustes distance. Figure 17 shows, 
at the left, the first two relative warps (principal coordinates of bending 
energy)‘computed in this way for the schizophrenia data set, and, at the 
right, the scatter of the first two corresponding scores. The import of this 
first relative warp is clarified in the plot of Procrustes loadings at upper 
center, where the localization to the segment between colliculus and 
splenium is very clear. The eigenvalues of these two warps are 0.697 and 
0.440, vs 0.260 for the third. The t-test for the difference between the 
groups on relative warp 1 (the horizontal in this scatter) is significant at 
0.0016. This is not too different from that corresponding to the particular 
pair of shape coordinates we selected for Fig. 16, but no longer requires any 
Bonferroni correction for selection, because the decision to look at the first 
relative warp was made in advance of looking at any data. (The purist might 
argue that we must correct for the decision to look at the (Y = - 1 result 
instead of those for (Y = 0 or (Y = 1, but the search for small-scale structure 
is itself a reasonable a priori judgment based in the desirability of small-scale 
findings, as justified in the foregoing text.) The effect of schizophrenia is 
found at the smallest scales represented in this data set: a reward for 
numerosity of landmarks. In fact, this finding is even stronger than the 
group mean difference of position on the last partial warp (the lower right 
frame in Fig. 15) owing partly to the concentration of the group difference 
in one direction rather than two and partly to the combination of more 
than one partial warp in this first relative warp. 

In this way a standard biometric technique, applied to the core structure 
of the morphometric synthesis, has produced a very promising biomathe- 
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Figure 17. A search for small-scale structure: relative warp analysis of the 
midsagittal data with cy = - 1 (see text). Left: The first two relative warps of all 
28 shapes, shown as partial warps and as Procrustes displacements. Right: 
Scatter of the first two relative warp scores (triangles, schizophrenics). Compare 

the analogous scatter for shape coordinates of splenium, Fig. 16. 

matical finding by otherwise conventional matrix manipulations of a derived 
shape basis carefully constructed to be biomathematically reasonable. 

5. Biometric Image Warping: “Vertical” and “Horizontal” Morphometrics. 
The thin-plate spline is, above all, a deformation function. Its original 
assignment was to warp any picture plane containing landmarks onto any 
other picture plane containing homologous landmarks. We have exploited 
the linear structure of those functions to interpret aspects of the biometrics 
of landmark shape, and we have shown how these deformations affect 
graph paper, but we have not yet applied those deformations to the original 
images from which our landmarks arose. 

Indexing the pictorial content of the original biomedical images by 
landmark locations subordinates the original Cartesian coordinate system 
to the considerably more biomathematical chart given by a rich landmark 
configuration. While operations of image processing (gradient computation, 
region-growing) are hardly affected by such relabelings, subsequent aspects 
of image analysis are typically far more effective after adjustment of the full 
biometric space of landmark rearrangement, the shape space of the preced- 
ing section. Here “adjustment” is by splined unwarping, not by any proce- 
dure linear in the original pixels. The subtler the effect that later analysis is 
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intended to uncover, the more important is this preliminary shape normal- 
ization. The splines serve to align all the pictures of a sample so that, as 
best the expert morphologist can manage, biological homology obtains 
across the whole stack pixel by pixel. In such a registration, scientific 
strategies like pixel averaging or blob detection will have maximum biomet- 
ric power. 

Predictably, the same Francis Galton who produced the first shape 
coordinates also carried out very early experiments with image averaging 
(see the discussion in Pearson, 1914-1930, Vol. 2, pp. 283-300). By placing 
mirrors in the optical path of his enlarger, Galton managed to produce 
affine corrections by entirely physical means. We are interested in more 
complicated warps and we would prefer to effect them computationally 
rather than optically. To manage this operation for landmarks, one splines 
the sample average shape onto the specimens and then exploits the inverse 
mapping (which is not quite a thin-plate spline itself) pixel by pixel to pull 
back the pixel values of the individual image to the corresponding loci of 
the fixed (squared) Cartesian coordinate system of the average. For each 
group of brains, for instance, there is a Procrustes average landmark shape. 
For each of the 14 specimens of each group there is a spline that warps the 
group average onto the picture plane of that image. Each pixel from the 
plane of the average shape is mapped by this spline to some location in 
each specimen image. Pixel by pixel, the values encountered in the speci- 
mens are copied back to the locations in the original square grid, the 
“standardized picture.” One such pullback is shown in Fig. 18. After they 
are averaged in place, 14 per group, there result the two frames of 
Fig. 19. The shape difference of Fig. 7 is still there, but many other 
contrasts have become visible as well. 

These two average images still incorporate different average landmark 
shapes. We can visualize the group mean difference in one single consistent 
geometry if we further unwarp each group average image onto the same 
average shape. This could be a grand mean or, as here, the average for the 
nonsyndromal group. After this final geometric adjustment, there result the 
two average images of Fig. 20 and the pixel-by-pixel image difference shown 
in Fig. 21. Here, at last, are aspects of the original images that are wholly 
independent of differences in their landmark geometry: the thinning of the 
schizophrenics’ corpus callosum all along its length, for instance, and also 
the reduction of extent of the thalamus (upon which there happen to be no 
landmarks). The thinning is particularly marked along a transect from 
splenium to genu (a “horizontal” diameter of the callosum). The analysis 
here is a great deal more powerful than that of Andreasen et al. (1994), 
which, by using only an affine image registration (a Galtonian “bounding 
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Figure 21. Difference (right minus left) of the frames in Fig. 20: the effect of 
schizophrenia upon midsagittal anatomy controlling for the position of all 13 
landmarks. Zero difference is set to gray level 128. Notice the emergence of 
additional biomathematical structure, notably along the inner border of corpus 

callosum, the upper margin of the third ventricle. 

box”), systematically blurs the averages and their contrasts in the vicinity of 
all deep structures. 

At the same time, Fig. 21 makes it quite clear that we have not 
completed the analysis of these images. The residual image here suggests a 
well-localized spatial structure that overlaps a real anatomical locus-the 
boundary between corpus callosum and third ventricle-but this feature of 
form is not yet encoded in the specifically biometric space of landmark 
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features. We need further landmarks on the inner border to bring this 
obvious biomathematical signal into the biometrical domain. Using a dif- 
ferent sample of brain images, Bookstein (1995c, d) demonstrates how this 
next step is carried out. 

This example hints at a powerful general principle. The images we are 
conveying for morphometric analysis begin as physical records of interac- 
tion with radiation within each cell of a parcellation of an organism’s 
surface or interior. The engineers and physicists who design the recording 
instruments are tempted to continue representing these often very expen- 
sive data sets as scalars or vectors in the Euclidean space of the raw data 
record, just as they come off the scanners. In that mode, for example, 
elegant suggestions about geometrically salient features of curving surfaces 
arise by direct geometric differentiation of surface forms (Koenderink, 
1990; Porteous, 1994). However, for our biomathematical context, the 
temptation to treat Cartesian coordinates of an empirical surface stripped 
of biological labels as having any possible cogent biological meaning in that 
form must be strenuously resisted. In particular, conventional image pro- 
cessing algorithms, which invariably compute gradients, convolutions with 
Gaussian blurs, spectral representations and so forth, pixel by pixel, seem 
quite incapable of making any biomathematical sense of these records. 
Because biomathematics cannot make any use of the pixellated coordinate 
system, it seems pointless to carry out biometrics that way (but see Friston, 
et al., 1994, for a non-biometrical application). Let us refer to this orienta- 
tion of linear statistics, that which uses pixel locations for its index set, as 
vertical. Figure 21 is, on its face, a purely vertical presentation: the differ- 
ence between the two sides of Fig. 20, pixel by pixel. 

There is always additional information, then, in the horizontal part of this 
construction: information about where the labeled locations and gradients 
of the anatomical sketch or textbook diagram actually lie with respect to 
the pixels, and how their configurations covary with height(s) of the data 
surface(s) above them. Whenever data are originally visual, and especially if 
they were originally pixellated, the linear machinery must be supplemented 
by a biomathematical semantics of deformation. The labeled points and 
directions thereby may move about in their Euclidean domain at the same 
time that images change above them, leading to multidimensional morpho- 
metric patterns that are very interesting both biometrically and biomathe- 
matically. 

An ultimately vertical analysis uses the geometry of the landmark-labeled 
image rather as one uses a covariate in a classic experimental design. It is 
as if the landmark configuration is nuisance variation, instrumental noise, 
control of which increases the precision with which other phenomena can 
be addressed. In analyses like these, one wishes to understand picture 
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gradients or their correlations with physical or biological processes as if 
they were painted on a shape prototype: we unwarp horizontally only to 
sharpen this representation. The careers of generations of comparative 
anatomists testify to the power of this maneuver. At the same time, we 
must preserve the transformation thus “quotiented out” in some paramet- 
ric form, with a count of parameters low enough to support some kind of 
biometrically competent inference about the shape differences being thus 
“corrected,” or else the pictorial findings remain uninterpretable in any 
biotheoretical context, where shape is just as likely to be signal as to be 
noise. Methods of fully distributed displacement analysis, such as that 
recently introduced by Grenander and Miller (19941, do not at present offer 
such low-dimensional parameterizations. Although those methods often 
align images for vertical processing better than landmarks can manage, 
there is no complementary horizontal method and, thus, again, no possibil- 
ity of arriving at a deeper biomathematical understanding of form. 

The morphometric synthesis reviewed here provides the first coherent 
general praxis for this purpose. Its combination of Procrustes fits, splines 
and partial warps sustains effective multivariate biometrical analyses of the 
horizontal at the same time that the vertical is standardized for more subtly 
theory-laden investigations. Our investigation of brain scans here is in- 
tended as a prototype for that broader praxis, the bridging that is my main 
theme: a vertical summary (Fig. 21) intertwined inextricably with a horizon- 
tal one (Fig. 7). The combination leaves to either domain, horizontal or 
vertical, what is most nearly linear there, and encapsulates each set of 
crucial nonlinearities (the geometry of shape space, the kernel of the spline, 
the interplay between landmarks or voids and the function of organs) in a 
manner conceptually orthogonal to equally necessary manipulations in the 
other domain. 

The triumph of modern multivariate statistical methods in fields arbitrar- 
ily far from their biometric origins has seriously distracted us from properly 
understanding the true meaning of these methods in the quantitative 
biological sciences. The meaning of statistical methods is inextricably 
bound up in what a community of scholars believe to be the meaning of 
their data (cf. Kuhn, 1959; Latour, 1987). The easy availability of matrix 
manipulations and the ease with which they can lead to publications and 
tenure is no substitute for an understanding of the nature of the tie 
between “the data” and the styles of explanation that actually drive the 
discipline in question. As the example of morphometrics indicates, there 
need be no prior mathematical model of a phenomenon (for instance, of 
skull growth), and yet the geometric dissection of the observed patterns of 
that phenomenon can be effective and suggestive as long as there is a 
satisfactory quantitative model of the descriptive process itself, the formal- 
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ism of landmarks and deformations by which the patterns on the scientist’s 
retina are converted into explanations. Figure 7 represents the production 
of a biomathematical hypothesis by appropriately enlightened biometrical 
manipulations; likewise Fig. 13; likewise Fig. 19; likewise Fig. 21. Any of 
these exemplify the discipline at the arch of the bridge that is the morpho- 
metric synthesis, but no one of them is complete by itself. 

The duality between biomathematics and biometrics embodied in the 
morphometric synthesis has thus been present just beneath the conven- 
tional rhetoric of quantitative studies of form all along, waiting to be 
unearthed in the course of seemingly unrelated advances in geometrical 
statistics and image processing. Within Thompson’s language of “Cartesian 
transformations” has always lurked a profound analytic insecurity: how do 
we know whether we have represented underlying shape phenomena well 
enough to justify confidence in the explanations suggested by one grid or 
another? By embracing the biometric language of “adjustment,” then 
applying the absolutely simplest of associated analytic tactics (the construc- 
tion of the mean difference in Fig. 21), we have come around at last to 
close the circuit of alternate rhetorics of quantitative biology exposed in my 
Introduction. The shape space spanned by a set of landmarks can be 
biomathematically meaningful and reliable to the extent that figures like 
these, analyses of its residuals, show no further biomathematical signal, no 
further hints of structure. (The evidence in Fig. 21 reminds us that we have 
not finished the analysis of the schizophrenia data set in this respect.) 
Similarly, the biomathematical analysis of empirically encountered splines, 
whether pure partial warps or linear combinations of warps, can be as- 
sessed by the extent of the biomettic spectrum that goes unexplained 
thereby. This spectrum is not limited to the Procrustes space of landmark 
shape alone, as in Fig. 15, but extends easily to the additional data supplied 
by image gradients having their own locations and orientations (Bookstein, 
1994; Bookstein and Green, 1993). 

The morphometrics of the synthesis bridges grids and vectors, then, by 
construing each of these abstractions as a partial description of underlying 
phenomena that must be viewed simultaneously in terms of the geometry of 
the “labels,” those maps and grids, and in terms of the image context, 
which stands in for the underlying structural processes actually governing. 
The morphometric synthesis is thus at root a mutual completion of previ- 
ously competing partial descriptions of the same underlying shape pro- 
cesses. Geometrically, the horizontal-vertical model of biomedical image 
analysis bridges the schools by tying the landmark location data to the 
report of a difference. Mathematically, that report is tested in two ways: by 
whether it conforms to some sensible understanding of how parts of an 
organism are integrated and, separately, by whether it appears to exhaust 
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the available information about loci that undergirds the biometric descrip- 
tor space on which the investigator has settled. 

In the absence of any of these multiple, interlocking verifications-one 
formalism for reliability of the shape phenomenon, another for biomathe- 
matical description of that phenomenon, a third for completeness of that 
description-I would expect neither quantitative findings about form nor 
their explanations to be stable across changes in instrumentation or ordi- 
nary fluctuations of sample design. The morphometric synthesis of the 
198Os, by reminding biometrics of its roots in the observation of organic 
form, is a fine example of how methodological discipline furthers applied 
quantitative investigation. In my view, the synthesis is a major methodologi- 
cal triumph, one to be relished by both statistics and mathematical biology, 
that has for the first time matched descriptive and inferential technique to 
a powerful classical mode of qualitative biological intuition. 

This paper draws on ten years of methodological investigations and collabo- 
rations. My colleagues in the synthesis include F. James Rohlf, Colin 
Goodall and Kanti Mardia, who generated large pieces of its statistical 
theory or biometric setting, and Richard Reyment, Paul Sampson and 
Leslie Marcus, fellow teachers and defenders of the faith. William D. K. 
Green created the Edgewarp package in which the schizophrenia images 
were processed. Much of the research reported here was underwritten in 
part by NIH grants DA-09009 and GM-37251 to Fred L. Bookstein. The 
first of these grants is jointly supported by the National Institute on Drug 
Abuse, the National Institute of Mental Health and the National Institute 
on Aging as part of the Human Brain Project. 
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