
        
Medical Image Analysis (1996/7) volume 1, number 3, pp 225–243
c© Oxford University Press

Landmark methods for forms without landmarks: morphometrics of
group differences in outline shape

Fred L. Bookstein∗

Institute of Gerontology, University of Michigan, 300 North Ingalls Building, Ann Arbor, MI
48109-2007, USA
Abstract
Morphometrics, a new branch of statistics, combines tools from geometry, computer graphics
and biometrics in techniques for the multivariate analysis of biological shape variation. Although
medical image analysts typically prefer to represent scenes by way of curving outlines or surfaces,
the most recent developments in this associated statistical methodology have emphasized the
domain of landmark data: size and shape of configurations of discrete, named points in two
or three dimensions. This paper introduces a combination of Procrustes analysis and thin-plate
splines, the two most powerful tools of landmark-based morphometrics, for multivariate analysis
of curving outlines in samples of biomedical images. The thin-plate spline is used to assign point-
to-point correspondences, called semi-landmarks, between curves of similar but variable shape,
while the standard algorithm for Procrustes shape averages and shape coordinates is altered to
accord with the ways in which semi-landmarks formally differ from more traditional landmark
loci. Subsequent multivariate statistics and visualization proceed mainly as in the landmark-based
methods. The combination provides a range of complementary filters, from high pass to low pass,
for effects on outline shape in grouped studies. The low-pass version is based on the spectrum of
the spline, the high pass, on a familiar special case of Procrustes analysis. This hybrid method is
demonstrated in a comparison of the shape of the corpus callosum from mid-sagittal sections of
MRI of 25 human brains, 12 normal and 13 with schizophrenia.
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1. INTRODUCTION

Over the last decade, previously scattered or fragmentary tac-
tics and techniques from medical image analysis, multivari-
ate statistics and computational geometry have been interwo-
ven very effectively in a newly standardized methodology for
landmark data. This morphometric synthesis binds together
the Riemannian structure of David Kendall’s shape space,
multivariate statistical maneuvers in the tangent space at the
Procrustes average form and graphical approaches for visual-
izing a wide variety of signals in the resulting data sets. The
synthesis brings to the analysis of medical images a biomet-
rical spirit—a concern for optimal description of causes and
effects—that was hitherto limited to the more esoteric reaches
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of evolutionary biology. Recent reviews include Bookstein
(1996a, 1997) and the papers in Marcus et al. (1996).

The power of the synthesis for scientific description, how-
ever, has thus far typically been bound to the very demanding
abstraction of landmark point data. This is inconvenient for
a number of reasons. Such data cannot at present be sup-
plied automatically with any reliability, but instead require the
scientist either to locate these loci herself or continually to
correct the erroneous selections produced by automatic algo-
rithms. Landmark data seem unavailable for large extents of
scientifically important images, and for others, such as render-
ings of the human cerebral cortex, landmarks cannot be de-
clared with assurance to correspond across reasonable ranges
of normal adult variation (to say nothing of disease states).
Most seriously, the discrete structure of landmark data does
not particularly suit the semantics of scientific explanations
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of form, which are typically concerned with causes or conse-
quences of variation in surface area or volume or with ‘forces’
(biomechanics, ultrastructure) associated with image content
over extended regions.

The two techniques at the core of contemporary morpho-
metrics are the Procrustes-projection construction of shape
coordinates and the visualization of localized shape phenom-
ena by thin-plate splines. (Both will be reviewed in the next
section.) There have been several previous attempts to extend
these techniques from the somewhat constricted domain of
landmarks to the curving form more generally. The thin-plate
spline, for instance, has been extended to incorporate arbitrary
information about affine derivatives (Bookstein and Green,
1993) and curvature (Little and Mardia, 1996; Mardia et al.,
1996) and to treat whole extended curves spanning landmarks
(Cutting et al., 1995). Procrustes analysis is likewise being
extended to whole curves (see, for instance, Sampson et al.,
1996). But in these extensions there has not hitherto been any
formal coherence analogous to the statistical geometry that
binds together the two approaches for landmarks.

This paper introduces such a combination of these tools for
a problem that apparently has not previously been formalized:
the task of effectively describing group differences in data
from curving forms that, while not featureless, nevertheless
need not have any reliably point-like landmarks anywhere
along the arcs. We will proceed by construing each compo-
nent of the synthesis, the spline and the Procrustes fit, as a gen-
tly nonlinear filter for regional differences of outline shape.
We will find the filters to be related by a directional comple-
mentarity of band-pass characteristics, so that the power of
the Procrustes-based filter is greatly heightened after a spline-
based preprocessing.

The data set used here to exemplify the localization tech-
niques of this paper has been exploited previously to demon-
strate landmark-based techniques (Bookstein, 1995a, 1996b).
The original images are single thick parasagittal slices, of
not particularly high quality, selected from clinical MR brain
scans of 12 doctors and 13 patients from the Adult Psychiatry
Unit, University of Michigan Hospitals. Previous analyses of
the group difference began with a data set of 13 landmarks lo-
cated by John DeQuardo, MD; the discrimination was sharp-
ened after I included four additional intersects placed around
the inner boundary of the corpus callosum. But of the original
13 landmarks, three were already positioned rather arbitrar-
ily along that arc and two others lay with equal arbitrariness
along the falx cerebri. My colleague, Bill Green, in preparing
to develop the algorithms for averaging here (Green, 1995,
1996), deleted those five landmarks in favor of augmenting
the data set by tracings of the two arcs in full. For the complete
feature set, the average of all 25 forms, against which each
case has been relaxed, is shown in Figure 1. From this scheme
we will use only the callosal outline itself, a polygon of 26
semi-landmarks in each of the forms. These 25 polygons are
shown in Figure 2. The bulb at the far right (toward the back
Figure 1. Scheme for relaxing information about the curving form
of a parasagittal brain section: eight landmark points, a callosal arc
of 26 points and a calvarial/dural arc of 12 points. Only the callosal
arc is used in this paper, but assignments of homology are based on
a spline relaxation that involves the other structures as well. Here
the geometry corresponds to the Procrustes mean shape. The head is
facing to the left.
Figure 2. Our data set: 25 26-point polygons around the callosal
border as traced by W. D. K. Green. Medical staff, first 12 forms;
schizophrenics, last 13. Sample and planes selected by John De-
Quardo, Adult Psychiatry Unit, University of Michigan. The bul-
bosity at the rightmost (posterior) end is named ‘splenium’; the one
at the left (anterior), ‘genu’.
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of the head) is called splenium; that at the left (anterior), genu
(‘knee’). The narrowing of the arch near splenium is the isth-
mus. Owing to limitations in the original images, we chose to
intentionally blunt the rostrum of the corpus callosum, which
otherwise would appear as a right-facing cusp at their lower
left. The first 12 images in this series pertain to the doctors
and the last 13 to their patients.
2. PRINCIPAL TECHNIQUES OF THE
MORPHOMETRIC SYNTHESIS

2.1. Procrustes shape distance
In ordinary language the shape of an object is described by
words or quantities that do not vary when the object is moved,
rotated, enlarged or reduced. The translations, rotations and
changes of scale we thereby ignore constitute the similarity
group of transformations of the plane. When the ‘objects’
are finite ordered point sets (either landmarks or the semi-
landmarks to be introduced presently), it turns out to be useful
to say that their shape is simply the set of all point sets that
‘have the same shape’. That is, we have formally defined
the shape of a set of points as the equivalence class of that
point set, within the collection of all point sets of the same
cardinality, under the operation of the similarity group.

Almost all of the multivariate statistics to follow will rely
on one simple construction: a distance measure for landmark
shapes. It proves most natural to define the squared Procrustes
distance between two shapes (that is, two equivalence classes)
as the minimum of summed squared distances between cor-
responding points over the similarities that studies of shape
are to ignore. As Kendall (1984) explains, this is the only ap-
proach consistent with how we want a shape distance to relate
to Euclidean distance in the original plane. Once the scale of
a landmark set A is fixed, the squared shape distance between
A and another landmark set B is the minimum of summed
squared Euclidean distances between the landmarks of A and
the corresponding landmarks in point set C as C ranges over
the whole set of shapes equivalent to B. Under this metric,
the set of equivalence classes actually becomes a Riemannian
manifold, Kendall shape space, which is a submersion of the
original R2k or R3k.

The Procrustes metric is most easily understood graphi-
cally. The top row of Figure 3 shows two quadrilaterals of
points presumed to be landmarks. Compute the centroid of
each set of four, then rescale so that the sum of squares of the
distances shown is fixed at unity (second row). The original
root sum of squares, the scaling factor here, is usually called
‘centroid size’ in the statistical literature; it is the same as
the square root of the net moment of the original set of land-
marks around their centroid. Superimpose one of the scaled
forms over the other at their centroids and spin it (third row).
In general, there will be a unique rotation (fourth row, left)
that minimizes the sum of squares of the distances between
corresponding landmarks. The squared Procrustes distance
between the forms is the sum of squares of those residual
distances at its minimum. It is proportional to the total area
of the circles shown at the lower right.
Figure 3. Procrustes shape distance for two quadrilaterals of land-
marks (top row). Each form is scaled separately (second row) to sum
of squares 1 around its own centroid. After the centroids are super-
imposed (third row left), either form is rotated about the other (right)
until the sum of squared distances between matched landmarks is
minimized. Fourth row, the squared Procrustes distance between
the original quadrilaterals is the minimum sum of squared distances
between corresponding points; it is proportional to the sum of the
areas of the circles drawn here.
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Formulas for this procedure have been familiar to the mul-
tivariate statistical community since Gower’s original matrix
formulation (see, for instance, Rohlf and Slice, 1990). If X1

and X2 are k × p matrices (p = 2 or 3) for the coordinates of
k landmarks after the centering and rescaling steps indicated
in the figure, and if the singular-value decomposition of Xt

1 X2

is U DV t with all elements of D positive, then the rotation re-
quired to superimpose X2 upon X1 optimally is just the matrix
VUt, 2 × 2 or 3 × 3. In a different notation, for two complex
vectors z j = (z1 j , . . . , zkj )

t, j = 1, 2, with
∑

i zi j = 0 and∑
i zi j z̄i j = 1, the superposition of the second form upon the

first is approximately

z2 →
( ∑

i

zi 1z̄i 2

)
z2 (1a)

and the Procrustes distance between the two shapes is approx-
imately

PD2(z1, z2) = 1 −
∣∣∣∣ ∑

i

zi 1z̄i 2

∣∣∣∣2

. (1b)

This version takes the form of an ‘error variance’ 1 − R2

in a univariate regression (Bookstein, 1991). A formulation
according better with the global geometry of shape space, but
less explicitly indicating its origin in a least-squares problem,
is PD(z1, z2) = cos−1 | ∑i zi 1z̄i 2|. The rotation in the fourth
row of the figure is by an angle arg

∑
i zi 1z̄i 2.

2.2. Averaging shapes and the Procrustes tangent space
The average of an ordinary list of numbers—their sum divided
by their count—has a least-squares property: it is the quantity
about which they have the least sum of squared differences.
This notion goes over directly to the study of shapes (equiv-
alence classes) now that we have a distance measure. (In
general, this indirect approach to averaging complex struc-
tures in a metric space is called a Fréchet mean.) The neces-
sary minimization is not too difficult (Kent, 1995). Indeed,
for two-dimensional data, it can be expressed as a closed-
form eigenanalysis. For a sample of complex vectors zt

j =
(z1 j , . . . , zkj ), j = 1, . . . N with

∑
i zi j = 0 and

∑
i zi j z̄i j =

1, all j , the Procrustes average is the shape z that is the first
eigenvector of the matrix

∑
j z j zt

j , k × k.
In practice, for reasons I will explain in the next paragraph,

this average is more often computed by the iterative approach
sketched in Figure 4—an alternation between fitting to a tenta-
tive average and averaging of the fitted locations landmark by
landmark. As in this toy example, beginning from any shape
in a sample, typically the algorithm converges to sufficient
accuracy by the second iteration. After we have computed
the average, we can put each individual shape down over the
average using the similarity transformation that made the sum
of squares from the average a minimum for that particular
case, resulting in the diagram at the lower center in Figure 4.

This tactic, far from being a mere graphical aid, is in fact
the most crucial step in the morphometric toolkit. Kendall
shape space is of dimension 2k − 4, 2k original Cartesian
coordinates decremented by the four degrees of freedom (two
for translation, one for rotation, one for scale) of the similarity
group of the plane. The tangent space to this manifold is like-
wise of dimension 2k−4. The construction at the lower center
in Figure 4 actually shows the projection of each shape of our
sample onto the tangent space to that manifold at the sample
average shape. That is to say, the Riemannian metric (in the
small, in the vicinity of the sample average) is preserved—for
each pair of specimens, the summed squared distance between
the representatives of the cases in Figure 4 is the same as their
Procrustes shape distance, while the representation is flattened
to a linear space of the correct dimension. The k coordinate
pairs of that figure actually serve as a set of 2k redundant
coordinates for this (2k − 4)-dimensional tangent space.

A tangent space can be imagined as a hyperplane touching
a hypersurface, but the modern approach construes it instead
as a linear space in its own right, the space of all linear germs
of scalar functions along curves through the point at which it
‘touches’ the manifold. To the statistician, these functions are
just what we mean by shape variables—algebraic functions of
the coordinates that are invariant under changes of position,
orientation or scale (Bookstein, 1991). That is, the tangent
space construction of Figure 4 provides the setting for all
possible linear multivariate analyses of the information in the
shapes of the landmark configurations. Furthermore, the usual
multivariate sum-of-squares metric of that representation is
the underlying Procrustes metric of the manifold, and so the
multivariate statistics will be commensurate with the original
Procrustes geometry.

For shape variations generated by circular Gaussian varia-
tions of landmark location, whatever the means and however
large that circular variance, the complete statistical theory of
these shape representations is known exactly. Small (1996) is
a good introduction to this distribution, the ‘Mardia–Dryden
distribution’, which was first announced in 1989, and Goodall
(1991) evaluates the associated multivariate normal approxi-
mations. For shapes that are concentrated in a small region
of the full shape space (as any within-species sample of the
shape of an organ is likely to be), one can carry out most of
the ordinary maneuvers of multivariate statistical analysis—
tests of group differences, correlations of shape with causes
or effects, principal-components analysis with respect to Pro-
crustes distance—directly in terms of this redundant basis for
the tangent space. The suitability of these linear approxima-
tions is very high (Bookstein, 1991; Kent, 1995). We will
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make use of this when we average shapes over groups in
Figure 8.

In three dimensions the Kendall manifold lacks the sym-
metries of the two-dimensional setting and the mathematical
statistics of all this is much less elegant; nevertheless three-
dimensional versions of all these data-analytic maneuvers are
known. For Procrustes distance see Rohlf and Slice (1990);
for the tangent spaces and approximations see Goodall (1991).
2.3. The thin-plate spline for landmark points and its
eigenspaces

The other foundation for the landmark methodology that this
paper extends to curves is a very simple and useful visualiza-
tion of shape difference as deformation: the thin-plate spline
interpolant between two sets of landmarks. Let U be the
function U (r) = r 2 log r, and consider a reference shape
(in practice, a sample Procrustes average) with landmarks
original form 1 original form 2 original form 3 original form 4

form  1 fitted to original form 1 form  2 fitted to original form 1 form  3 fitted to original form 1 form  4 fitted to original form 

fits above and their average scatter of fits, updated average Procrustes average of four shapes

Figure 4. Procrustes averaging and Procrustes shape coordinates. Top row, four forms of four landmarks. Middle row, Procrustes fit of each (×s)
to an arbitrary starting guess (dots: the first form). Bottom left, the next estimate of the average (dots) is the average of the fitted locations from
the previous step. A second round of fits and averages changes it hardly at all—the algorithm seems to have converged already. Bottom right,
the Procrustes shape coordinates (×s) are the locations of the landmarks after the fitting step upon the average shape (dots) at the convergence of
the algorithm. These actually represent the orthogonal projection of the sample onto the tangent space to Kendall’s shape manifold at the shape
on the right (see text).
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Pi = (xi , yi ), i = 1, . . . , k. Writing Ui j = U (Pi − Pj ), build
up matrices

K =


0 U12 . . . U1k

U21 0 . . . U2k
...

...
. . .

...

Uk1 Uk2 . . . ψ 0

 , ψ Q =


1 x1 y1

1 x2 y2
...

...
...

1 xk yk

 ,

(2)
and

L =
(

K Q
Qt O

)
, (k + 3) × (k + 3),

where O is a 3 × 3 matrix of zeros. The thin-plate spline
f (P) having heights (values) hi at points Pi = (xi , yi ), i =
1, . . . , k, is the function

f (P) =
k∑

i =1

wi U (P − Pi ) + a0 + axx + ayy (3)

where

W = (
w1, . . . , wk, a0, ax, ay

)t = L−1 H  (4)

with H = (
h1, h2, . . . , hk, 0, 0, 0

)t
. Then we have f (Pi ) =

hi , all i : f interpolates the heights hi at the landmarks Pi .
Moreover, the function f has the minimum bending energy
of all functions that interpolate the heights hi in that way: the
minimum of∫∫

R2

((
∂2 f

∂x2

)2

+ 2

(
∂2 f

∂x∂y

)2

+
(

∂2 f

∂y2

)2
)

(5)

where the integral is taken over the entire picture plane. The
value of this bending energy is

1

8π
Wt H = 1

8π
H t

kL−1
k Hk,ψ (6)

where L−1
k , the bending energy matrix, is the k × k upper-

left submatrix of L−1 and Hk is the corresponding k-vector of
‘heights’

(
h1, h2, . . . , hk

)
.

A plane-to-plane interpolation is couched as a Cartesian
pair ( fx, fy) of these functions based in the same matrix L
and for which fx uses a vector Hx of x-coordinates of a
target form and fy uses a vector Hy of y-coordinates. The
bending energy being minimized is now the quadratic form
H t

x L−1
k Hx + H t

yL−1
k Hy. Examples of these grids, applied

to semi-landmarks instead of landmarks, can be seen in Fig-
ures 5, 9 and 10.

The spline helps visualize statistical summaries based on
these Procrustes coordinates in a remarkably effective man-
ner. Any vector computed in the course of a multivariate
analysis—a mean difference, for example—can be visualized
as a deformation in this way. That the integral in Equation (5)
is minimized means that the spline fits shape changes with the
smallest possible variation of affine derivative (shapes of the
little grid cells in those figures). If a given change of affine
derivative can be managed over a larger interval, its contribu-
tion to the integral of squares is lower; hence the spline tries to
represent deformations ‘as globally as possible’. In this way it
leads the trained eye to a remarkably reproducible assessment
of both global and local features of change. Eigenvectors of
the bending-energy matrix L−1

k of Equation (6) can be shown
(Bookstein, 1995b; Mardia, 1995) to be orthonormal in the
Procrustes geometry of the tangent space, not just the Carte-
sian geometry of the original digitizing space. The eigen-
vectors emerge paired by any orthogonal pair of Cartesian
directions. In general, they emerge in order of localization
(Bookstein, 1991), but we will not need to exploit that fact
here.
template target, bending energy 0.241

relaxed, bending energy  0.065 unrelaxed and relaxed

-0.3 -0.1 0.1

-0
.1

0.
1

0.
3

Figure 5. The geometry of relaxation using a thin-plate spline.
Upper left, a ‘template’ or starting form of 19 points. Upper right,
arbitrary set of pre-assigned homologues, with the ordinary thin-
plate spline interpolating these point-pairs. Lower left, landmarks
after a relaxation along escribed chords (of which short segments
are shown) through starting positions. Lower right, the principal
effect of the relaxation is the counter-rotation of the opposing curve
segments at the center, as viewed in the regularization of the grid at
its center between the upper right and lower left panels. That the
bending energy at small scales is so sensitive to digitizing noise is one
reason it is not often used as a metric in the morphometric literature
(see Bookstein, 1996a, 1997).
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Uniform transformations (affine transformations, shears)
enter into this series as a ‘zeroth pair’, corresponding to the the
eigenspace of eigenvalue zero. Augmented thereby, the set of
eigenvectors of bending energy rotates the redundant basis of
2k Procrustes shape coordinates into a complete orthonormal
set of 2k − 4 values. The associated vector decomposition,
the components of which are called partial warps, decomposes
any observed change uniquely into a sum of fundamental
modes of variation based only on the average landmark shape,
without any assumptions about material properties in between
the landmarks. These and other helpful aspects of the spline
are reviewed in Bookstein (1996a, 1997).

The three-dimensional version of this same thin-plate
spline has been known for as long as the 2-D version. The
kernel r 2 log r is replaced by |r |, so that the spline is no longer
smooth at the landmarks. The matrix Q of Equation (2) gains
a fourth column of z-coordinates, the vectors H and W gain
(k+4)th terms 0 and az, respectively, and the integral (5) now
has six terms instead of three. The bending energy minimized
by the spline is now −(

H t
x L−1

k Hx + H t
yL−1

k Hy + H t
zL−1

k Hz
)
.

3. SPLINE RELAXATION ALONG CURVES

In the application to landmark points, although the bending
energy (6) for the spline is a global minimum of the integral
(5), this property does not drive the calculus of minimization;
it is a formal identity. Under other circumstances, however,
the characterization can become an algorithm for optimiza-
tion. In the present application it allows the spline method to
be extended so that some of the target landmarks are freed to
slide along lines (Bookstein, 1991). Let there be a ‘nominal
set’ of right-hand landmarks Y0

1 , . . . , Y0
k collected coordinate-

wise as the vector Y0 = (Y1x, . . . , Ykx, Y1y, . . . , Yky), the
concatenation of the two vectors H of the preceding treat-
ment. We seek the spline of one set of landmarks X1 . . . Xk

onto another set of landmarks Y1 . . . Yk of which a sublist
Yi1 . . . Yim are free to slide away from their nominal positions
Y0

i j
along directions u j = (u jx , u jy). It seems entirely natural

to proceed by minimizing the corresponding bending energy.
That energy is the quantity Yt

x L−1
k Yx + Yt

yL−1
k Yy where

the landmarks Yi j of the sublist range over lines Y0
i j

+ t j u j .
To minimize, collect the parameters t1, . . . , tm in a vector
T of length m. T is the parameter vector over which we
will minimize the energy of the corresponding spline. The
minimization is easiest to notate if we collect the directional
constraints u1, . . . , um in a matrix of 2k rows and m columns
in which the (i j , j )th entry is u jx and the (k + i j , j )th entry
is u jy, otherwise zeros. The task is now to minimize the form

Yt

(
L−1

k 0
0 L−1

k

)
Y ≡ YtL−1

k Y (7)
over the hyperplane Y = Y0 +UT. The solution to this famil-
iar generalized or weighted least-squares problem is achieved
for the parameter vector

T = −(
U tL−1

k U
)−1

U tL−1
k Y0. (8)

Figure 5 demonstrates this computation for a little scheme
of 19 ‘landmarks’ slightly simpler than the real average form
we will actually be using. The thin-plate spline from the
template to the ‘raw data’ shows considerable local shear in
the middle of the arch and at its tips. The relaxation allows
points along the upper and lower arcs of this arch to slide
in opposite directions from their starting positions (large ×s
at lower left) to the positions that jointly minimize bending
energy and allow the tips to relax to the left or right similarly.
In this example, the directions (u j 1, u j 2) of relaxation are set
to escribed chords u j = Yj +1 − Yj −1. (An escribed chord
to a polygon is a line through a vertex parallel to the join of
its two nearest neighbors. At convex vertices it lies outside
the polygon.) This quick-and-dirty method works adequately
except where the polygon is turning rapidly, for which more
sophisticated procedures are required. Deviations of the target
polygon in a direction normal to the template boundary are
not relaxed, as one can see under the ‘shoulders’ of this form,
where most of the remaining bending is to be found. In our
example, all the landmarks were allowed to slide. But the
representation of Equation (8) does not require m = k, so any
subset of landmarks could be fixed in advance. We will not
need that extension here.

The minimization in Equation (8) accords with the integral
formulation (5): the relaxation will try to bring the variation
of all first-order derivatives toward zero. Sometimes it can
achieve that minimum. For instance, if the method is applied
to a hexagon of landmarks, it will always arrive at a com-
pletely affine (linear) transformation, as in Figure 6. (The
number of parameters that must be fitted is now reduced to
six, which is the dimension of the complete space of affine
transformations, and the machinery of Equation (8) is linear.)
For more complicated data, the minimization will tend to cast
changes of affine derivative at the largest spatial scales. It
is therefore suited to multivariate statistical procedures that
scan down a hierarchy of spatial scales, such as the nested T2

convincing us of the significance of the group difference here
(see below).

In three dimensions, the vector Y0 is of length 3k and
L−1

k = diag(L−1
k , L−1

k , L−1
k ). The matrix U has three non-

contiguous rows per landmark and one or two columns per
sliding landmark, as each is constrained to a curve (one degree
of freedom) or to a surface patch (two degrees of freedom).
In the former case, the entries Ui j , j , Uk+i j , j , U2k+i j , j are the
direction cosines of the tangent to the curve; for the constraint
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to surfaces, the corresponding two columns of U are any
two perpendicular vectors in the (approximate) tangent plane.
These features are built into the Green’s program package
Edgewarp3D, release of which is expected early in 1997.

The minimization in Equation (8) will generate a relaxation
no matter what the geometry of the constraint vectors Uj ,
as long as the matrix U tL−1

k U is nonsingular. In Figures 5–
7 these vectors were taken as finite differences Yi +1 − Yi −1

corresponding to escribed chords of the polygon. These can
lead to relaxations some distance from the starting outlines
when forms are sampled at a spacing too sparse to suit the
actual curvature. In Green (1995), they are instead taken as
Yi − Yi ±1, i.e. actual edge segments of the nominal starting
polygon. It would be simple to improve this preliminary
algorithm in several other ways, for instance, incorporating
B-spline representations of the starting polygons instead of
this crude C1 construction, then iterating (Green, 1996) to
ensure that points are clamped to the original outline represen-
tations. However, there is an additional step in the procedure
which moots all these second-order optimizations of the single
outline—the Procrustes averaging we have already introduced
for landmarks, which aggregates over a sample of first-order
variations.

3.1. Procrustes averaging of curves
For the application to curves, the Procrustes averaging algo-
rithm of Figure 4 is altered by inserting an additional step
corresponding to Figure 5 for every form in every cycle.
The resulting iterative sequence is as in Figure 7. One must
start with all shapes in some approximate registration, such
as by centering and rotating to common principal moments.
Upon a starting estimate of the average, perhaps the first form
in the data set, one carefully assigns a reasonable number
of points spaced roughly inverse to the outline curvature,
then samples every other outline by a purely local geometric
correspondence (such as by closest-edge projection). This
initialization could be done automatically (W. D. K. Green,
personal communication). The point count is maintained
through all subsequent computations. Each outline of the
data set is relaxed along itself to that starting set of points
and the loci that result from the relaxation are Procrustes-
averaged by the usual algorithm of Figure 4. The average that
results is the starting form for the next round of relaxations.
In practice this algorithm always converges. At convergence,
the loci that represent each outline form of the data set by a
selection of points from its edges correspond between every
pair of individual forms of the data set by virtue of having
arisen by spline relaxation from the same point of the final
Procrustes average. They thus share some of the criteria that
make landmarks useful for scientific analysis; here we call
them semi-landmarks. They fail to be true landmarks in that in
contrast to the requirements of Bookstein (1991) they cannot
be defined on a single image—they exist only in the context
of a group average. Of the two coordinates of each semi-
landmark, one (the coordinate along the curve) is the vari-
ation of the ‘definition’—this coordinate is set for all cases
at the same time, early in the algorithm of Figure 7. Only
the coordinate normal to the outline carries information about
differences between specimens or groups.

Green (1996) shows how to extend the algorithm used here
to any combination of open or closed curves and landmark
points. The data of Figure 2 have already been preprocessed
by this algorithm using the landmark-and-arc scheme of Fig-
ure 1. When there are reliable ‘corners’ of the curves, they
are matched by the spline regardless of whether they appear
in the slip list i1, . . . , im. (In effect, it costs less energy to
bend one corner into another corner than to bend a flat spot
into a corner while simultaneously flattening another cor-
ner nearby.) In other words, features that behave like good
landmark points (Bookstein, 1991) are treated like points
whether or not the investigator labels them as such in advance
(cf. McEachen et al., 1994). This landmark–outline compos-
ite may already subsume a great many approaches suggested
elsewhere for various special cases, including open curves
starting form target form spline relaxations on six landmarks are affine

Figure 6. Spline relaxation of a hexagon of landmarks will almost always result in an exactly affine transformation: the quadratic form in
Equation (7) can be zeroed.
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between two landmarks (Dean et al. 1996a, Sampson et al.
1996) and landmarks with directions through them (Bookstein
and Green, 1993). Green conjectures that this extended algo-
rithm can be expected to converge to useful representations of
sample average shapes and variation around those averages in
all of these extended settings.
4. PROCRUSTES DESCRIPTION OF GROUP
SHAPE DIFFERENCES

The final step in the Procrustes approach to landmark statis-
tics, Figure 4 lower right, represents shape variation by
the fitted locations of each landmark when superposed by
least-squares upon the sample average. This algorithmic
step persists in the hybrid with the spline relaxation (see
Figure 7). For this little data set of 26 semi-landmarks for 25
callosal shapes, there results the scatter of Procrustes shape
coordinates at the upper left in Figure 8. (Remember that
although this is a Procrustes scatter, it is taken around the
spline-relaxed average.) The component variations ‘at’ the
separate semi-landmarks are mostly well behaved and only
modestly noncircular. The outlying points at the lower right
center derive from one callosum of extremely recurved sple-
nium, the form at the right in the third row of Figure 2.

As for landmarks, most multivariate analyses of the shapes
of these outlines can be carried out directly on these Procrustes
Figure 7. New algorithm for combining Procrustes averaging with spline relaxation. Top row, four ‘original forms’, generated by random
variation around the template of Figure 5. Middle, each original outline is relaxed against an initial estimate of the average, in this case, the first
original outline. Relaxation is along escribed chords as in the text. Bottom left, the Procrustes average of the relaxed forms from the preceding
step becomes the next estimate of the average outline. Bottom right, the algorithm has converged by the end of the second iteration.
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shape coordinates. For this paper the simplest such analysis
will suffice: the computation and comparison of two group
average shapes. These averages (simple centroids by group
of the points scattered in Figure 8, upper left) are shown in
the upper right-hand panel. The largest displacement is at
semi-landmark 15. The lower left-hand panel shows scatters
by group at semi-landmarks 14, 15 and 16, the subarc that
appears most interesting. In this registration, the difference at
semi-landmark 15 (×s versus +s) is significant separately (by
Hotelling’s T2 test on its pair of coordinates) at p ∼ 0.02.

This is not evidence enough for a claim of statistical sig-
nificance, of course, since we selected this point as the most
interesting out of 26. The morphometric synthesis offers an
assortment of global significance tests that do not require any
selection of points or features (Bookstein, 1996c). One that
is appropriate in this context is a nested series of Hotelling’s
T2 tests on the partial warps derived from the bending-energy
matrix L−1

k above. (The original data would not be amenable
to ordinary T2 testing at all: there are at least 26 degrees of
freedom for shape, but only 25 specimens in the sample.) The
group difference is orthogonally projected (in the Procrustes
geometry) onto a series of subspaces of dimensions of the
tangent space that do not exceed a certain degree of ‘bend-
ing’. One first tests the 2-subspace (plane) of uniform (affine)
changes, then the span of the uniform and the largest-scale
partial warp, and so on until degrees of freedom are exhausted.
The most significant of these tests is for the span of the uni-
form part and the first five warps, corresponding to vector
multiples of the eigendeformations in Figure 9 along with uni-
form shears. Projected onto these six two-dimensional modes
of deformation, the group difference is statistically significant
by Hotelling’s T2 test at p ∼ 0.002. As we had 11 of
these tests to choose from (half the sample size, minus 1), the
corrected probability is a little above 2%, which is, indeed,
satisfactorily significant. The projected (filtered) mean out-
lines with a significant difference are shown at the lower right
in the figure; compare with the upper right panel of Figure 8.

The same spline visualization that we used to relax individ-
ual outlines to the emerging mean outline shape can be used
to represent the difference between the two group average
shapes of Figure 8. The relation between them is shown in
Figure 10 magnified by a factor of three (since the spline is
a matrix manipulation, no iteration is required). This version
of the finding is easier to report to a scientific audience than
the statistical display of the same information in Figure 8. Its
main features are quite clear: the average callosum of these
schizophrenics differs from that of the normal group mainly
in a substantial upward-rightward deviation of the isthmus
together with a small diminution of genu size. There seems to
be no alteration in size or shape of the main arc of the arch.
The assumption that these averaged semi-landmarks can be
treated as landmarks, without further slipping, is sustained by
the plot of the ‘forces’ (coefficients Wx, Wy) of the mapping,
shown at the right in the figure. Almost all of these lie normal
to the average outline curve. This means that the comparison
of averages is relaxed already, as it should be.
5. LOCALIZING CHANGES OF OUTLINE SHAPE

Figure 8 shows a displacement of semi-landmark 15 between
the groups in the direction normal to the average boundary
by 136% of the averaged within-group variance—a signal-
to-noise ratio (S/N) of 1.36. But some of this noise can be
circumvented. Its denominator (net within-group variation)
incorporates displacements from the Procrustes optimization
along other parts of the outline. For instance, variations in
size of genu, the structure at the far left, will displace the
centroid of the entire form in ways that have nothing to do
with the shape difference in the vicinity of point 15. But
Figure 8. Procrustes analysis of the whole callosal form. Upper left,
conventional scatter of Procrustes-fit coordinates (least-squares su-
perposition to an average) at convergence, where it is the fixed-point
of the slipping algorithm as well. Upper right, group mean contours
in this registration. Solid line, normals; dashed line, schizophren-
ics. Lower left, enlargement of scatters at points 14, 15, and 16.
×, schizophrenics; +, normals. The difference at point 15 is signif-
icant at about the 2% level by ordinary T2 test. Lower right, key to
semi-landmark numbers referred to in the text.
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because the Procrustes step recenters the whole form, and be-
cause the vector toward genu is oblique to the average outline
tangent at point 15, this variation at genu will contribute to
the denominator of the S/N ratio we have just inspected. The
Procrustes analysis can also attenuate the numerator of the
S/N ratio. In Figure 8, the systematic difference at genu has
shifted the dashed (schizophrenic) form leftward, diminishing
the shift at semi-landmark 15 that we are trying to assess.
Since there are such group differences at the other end, it is
best to exclude them from our judgment of what is happening
at point 15.

We experiment with a different starting Procrustes fit: just
half the form, the ‘back half’, as in Figure 11. (To divide into
‘halves’ this way is not an arbitrary choice. The susceptibility
of Procrustes fits to large-scale changes is largest along the
longer principal moment of the mean shape, which is obvi-
ously this horizontal direction. Empirically, the largest two
principal components of shape are aligned with this contrast as
well, so that to whiten the large-scale noise one would subset
left from right in preference to any other statistical surgery.)
This change does not involve any further spline relaxations.
But the individual shifts and rotations to the average and the
individual scalings by centroid size have been recomputed de
novo. The net effect is to alter the superposition of the mean
contours and the geometry of variation around them, while
leaving their separate shapes pretty much unchanged. For
this posterior part of the callosum, the variance of Procrustes
shape coordinates is distinctly less than before. The group
difference at semi-landmark 15 now has a S/N of 1.74, and
the finding has a significance level (by Hotelling’s T2) of
0.0015 (which still needs correction by a factor of 26). A plot
showing the original polygonal outlines, lower right, confirms
this tendency of separation for the locus at which the outlines
transect their approximate shared ‘normal’ near point 15.

Instead of trying harder and harder to find subsets of fea-
tures onto which to project, we might try another strategy, the
partial warp 1  group difference ( -0.0079 , -0.0039 ) partial warp 2  group difference ( -0.014 , -0.0099 ) partial warp 3  group difference ( 0.0031 , 0.0044 )

partial warp 4  group difference ( 0.0026 , -0.0072 ) partial warp 5  group difference ( -0.0012 , -0.0067 ) group means projected onto first six eigenspaces
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omnibus test, that accepts features at all scales simultaneously,
but requires that they be combined according to an a priori
formula (in this case, the usual Procrustes sum of squares). If
our data came in the form of the circular isotropic Gaussian
variances of the mathematical development, we could use
Goodall’s (1991) equivalent F-distribution. But for data as
highly nonlinearly processed as these slipped spline residuals,
there is no ‘distribution’ available. We exploit, instead, a per-
mutation test (Good, 1994; Bookstein, 1997). In a permuta-
tion test, one chooses a statistic (in our case, summed squared
Procrustes distance normal to the average curve, weighted in-
versely by the pooled variance of that distance) and computes
its distribution when the true group assignment is replaced by
many hundreds or thousands of random permutations of case
number over group. The permutation process makes no as-
sumptions whatever about the structure of variation across the
landmarks within the full pool of 25 cases; it is concerned only
with the relevance of the group label to the average shape. For
each such permutation, there is a squared Procrustes distance
between group means. The appropriate tail probability for
the hypothesis of a group mean difference in shape, in the
metric of this Procrustes sum of squares, is exactly the fraction
of times a random permutation results in a group mean Pro-
crustes distance larger than the one afforded when the group
labels were taken at their true values.

For this posterior half of the form, this test reports a sig-
nificance level of 1.4%. The p-value must be corrected for
the number of degrees of freedom it represents from the shape
space as a whole. Here, the fully-slipped data set bears 26
degrees of freedom (one per landmark) and the ‘splenium
half’ of the form is tested between landmarks 3 and 15, which
is 13 of those 26; so the correction is by a factor of 2. (The
remaining degrees of freedom are 11 for the other ‘half’ of
the form and 2 for the relation between the two halves.) This
results in a significance level of 2.8%, which is in adequate
agreement with the implications of that single T2 at semi-
landmark 15. The same test applied to the outline as a whole
is too badly confounded by large-scale variation to be usable
in this omnibus form.

5.1. An adaptive high-pass filter for shape differences
What this development hints at can be restated explicitly in
a suggestive way. The Procrustes-based T2 at one landmark
is working as a signal detection filter at the smallest scale,
the scale of one landmark at a time. It thus complements the
analysis in Figure 9, the low-pass analysis exploring the spec-
trum of the group difference from its global end. The signal
being sought, a shift of one semi-landmark on a background
of a subset of the others presumed unchanging in mean posi-
tion, is a special case of the ‘resistant residual’ familiar to the
morphometric community (Rohlf and Slice, 1990). Any mean
shift signal will be passed through the ‘Procrustes projection’
(Kent, 1995) like any other quasilinear shape signal. This
projection attenuates more or less as the landmark suspected
of shift lies near to or far from the centroid of the mean Pro-
crustes form. Thus we should be searching in neighborhoods
centered over the target landmark. The preliminary spline-
relaxation step has augmented the power of this filter in a
very suggestive way. Because of the strong anisotropy of its
spectrum, one can assume any local changes along the curve
Figure 10. Thin-plate spline for the comparison of group mean semi-landmark shapes. Left, grid for the threefold magnification of the change
from normal mean to schizophrenic mean. Right, coefficients of the spline, showing perpendicularity to the mean curve at points of low
curvature.
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to be negligible by comparison with those across the curve.
Hence the Procrustes filter needs to be read only in one single
direction, the direction normal to the mean curve.

The complementarity of these two filters can be usefully
explored in the one-dimensional equivalent shown in Fig-
ure 12. Instead of outlines, consider two samples of functions
over a wide interval of integers centered at x = 0. In this
simulation, the function has an expected value of 0 at every
value except x = 0; there, one group has an expected value
of 0, the other, some nonzero value α (here 0.6). The obser-
vations vary around this expected value by the sum of two
processes of quite different spatial scales. One is a completely
uncorrelated process of Gaussian noise i.i.d. N(0, σ 2), at each
point of the domain. The other is a process of very long-range
order indeed—for each case an independent normal deviate εi ,
distributed as N(0, τ 2), multiplying an exact parabola y = x2

applying throughout the domain. (Here σ 2 = 0.01, τ 2 =
0.001.) The figure displays one realization of this compos-
ite process for two groups of 25. The small-scale process
is intended as the analogue of ordinary edge-location noise,
while the long-range order corresponds to large-scale shape
differences or signals from other parts of the tissue under
study.

By analogy with our Procrustes-based search for a normal
deviation, in this set-up we apply a filter that contrasts the
value of the function at 0 to its average value across some
neighborhood of zero. This is the ‘δ-filter’ with coefficients

(2m)−1
( m︷ ︸︸ ︷
−1, . . . ,−1, 2m,

m︷ ︸︸ ︷
−1, . . . ,−1

)
centered at 0. As m varies, the filter will supply an estimate
α̂ of the mean shift α at 0 whose error variance is a func-
tion of m having a proper minimum somewhere. In fact,
the variance of the filter output for the single case is σ 2 +
(2m)−2

(
2mσ 2+m(m+1)(2m+1)τ 2/3

)
, which is minimized

for m =
√

3
2

σ 2

τ 2 + 1
2 . For the values of σ 2 and τ 2 here, this
Procrustes fit coordinates, points 2 through 17 only
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Figure 11. Procrustes analysis for the posterior half of the form,
rotated to its own Procrustes horizontal. Upper left, means and
Procrustes-fit coordinates. Lower left, enlargement for points 14,
15, and 16. As a multiple of its own standard error, the group mean
difference at point 15 in the direction normal to the outline is 30%
larger than it was in Figure 8. Lower right, superposition of original
outline polygons indicates the extent of separation at point 15 normal
to the shared tangent direction.
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Figure 12. One-dimensional analogue for the claim that the δ-filter
will be complementary to the large-scale analysis of shape difference
provided by the spectrum of the thin-plate spline. The functions
here are a superposition of uncorrelated noise of variance 0.01 and
multiples of x2 by Gaussians of variance 0.001 over a mean shift of
0.6 at the single argument 0 (obvious sharp peak at the center). The
two groups are shown as two different types of line (dotted and solid).
The text derives the optimal neighborhood width for detecting the
peak at 0. This optimal interval is (−4, 4), smaller than one might
expect, owing to the pernicious effect of the long-range order in the
quadratic term.
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yields m ∼ 4: an interval less than half the width of the plot
around the target point 0.

Back in the domain of morphometrics, this model
of quadratic growth (the function x2) for long-range or
large-scale effects is qualitatively quite plausible—growth
gradients, the largest partial warps, and other realistic
candidates have always been modeled by such supralinear
scaling (Bookstein, 1991, Sections 7.3 and 7.4). If local
shape differences are also present, they might be expected
to be found as optima of the two-dimensional version of
the δ-filter at some intermediate window size. Furthermore,
because the spline relaxation of every specimen curve against
the average preferentially filtered out tangential differences
of group mean shape within ‘small’ neighborhoods, it is fair
to characterize candidate findings by the statistical signal
normal to the average curve, which is to say, by exactly the
S/N ratio of the two experiments above.

We are thus led to the analysis shown in Figure 13: a search
over k(k−2) potential neighborhoods in search of local max-
ima of S/N ratios for the group difference signal normal to the
mean curve. We hope for a ‘corrugated’ surface, with maxima
that are sharply a function of position on the outline (semi-
landmark number) and only very mildly a function of neigh-
borhood size. By analogy with Figure 12, the neighborhoods
are centered at the landmarks at which S/N is computed. The
list of candidate neighborhoods is then just the union of all the
lists of j nearest neighbors of each semi-landmark in turn, j =
2, 3, . . . , k−1. (The hierarchy of neighborhoods is computed
from the Procrustes average shape.) For legibility, the figure
begins at j = 5. The values plotted at the right ends of these
traces correspond to the neighborhoods of size 26 (which are
all the same ‘neighborhood’, the whole set of points—the
numerators of these ratios are the displacements displayed in
Figure 8). The figure suggests another global significance test
for the net shape difference: the univariate t-test of group
difference in the average shift of semi-landmarks 14 and 15
in the original Procrustes registration. That t-ratio is 4.0,
significant at p ∼ 0.0005. Multiplied by 26 (the number of
such segments), that is a probability of 1.3%, comparable with
the figure of 2% which we arrived at by the complementary
filter using the hierarchy of eigenspaces of bending energy. It
is not necessary to fit all of these windows, as the dependence
on scale (Figure 13) is quite smooth, but there seems to be no
harm in doing so.

This novel diagram is remarkably informative about as-
pects of the data omitted from Figures 8 or 10. Clearly the
comparison of callosal form between the groups shows just
one region of localized shape change, the arc 14–15 we have
already noticed in the global splines. The single small region
of best S/N is the neighborhood of size eight around semi-
landmark 15, for which the S/N is 1.76 and the directional
t-ratio a satisfactory 4.4, p ∼ 0.0002. Multiplied by 26
(points) and further by a factor of ∼3, the effective dimension-
ality of the curves in Figure 13, this is about ∼2% again, the
same range at which we have arrived by two earlier methods.

The Procrustes analysis that produced this S/N, the corre-
sponding superposition of mean outlines and the classifica-
tion afforded thereby are all collected in Figure 14. Our two
complementary filters arrived at the same conclusion about
the shape change. It is mainly a rearrangement of the isthmus
between splenium and arch. At large scale (Figure 10) this
has the appearance of a displacement; here at small scale, the
appearance is instead of a sculpting or bending. At larger
scales, according to Figure 13, semi-landmark 14 is a bit more
informative separately, but the corresponding visualization is
already apparent in Figure 10. Although two other semi-
landmarks, 2 and 11, seem to embody some small-scale infor-
mation, clearly the S/N surface is ‘corrugated’. Just as we had
hoped, it expresses widely spaced local effects. The output of
this center-versus-periphery Procrustes filter is very robust to
variation of neighborhood size but highly sensitive to position
along the curve.

At the lower left in Figure 14 is the classification afforded
by this optimal local filter. Classification is clearly improved
over that in Figure 8, reproduced at lower right, by attending
to the ‘resculpting’ of the isthmus. This is in spite of the
difficulty in digitizing this arc by hand. (In many original
images the fornix springs from this arc to the left, requiring a
subjective decision as to where the underlying outline should
be located. It was estimated, of course, without any knowl-
edge of diagnosis.)

The model underlying the filter here contrasts strongly with
the basic distributional model for Procrustes-type analyses of
discrete landmarks. Our standard landmark methods (Book-
stein, 1995–97) cast a 26-‘landmark’ data set like this one into
a 48-dimensional space of shape phenomena within which a
strenuous symmetry is enforced a priori. Variation tangential
to and normal to outlines must be weighted equally and group
differences are modeled as equally plausible regardless of the
direction along which they lie in this space. For instance,
every set of three landmarks, neighboring or not, is considered
an equally likely locus of some potentially crucial aspect of
shape discrimination. In this context, the best single overall
multivariate test statistic is Goodall’s (1991) omnibus F-ratio
(see also Bookstein, 1996a, 1997), which is a multiple of the
ratio of Procrustes distance between the group means to the
Procrustes variance within the groups separately. For the data
here its value is 1.32 on 48 and 1104 d.f., significant at p ∼
0.07 only. That was, in essence, a single test of the displace-
ment between mean curves in Figure 8 with respect to the net
degree of variation around those means aggregated over all the
semi-landmarks separately. Because the F could not take into
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account the concentration of the finding in both direction and
location, it was blocked from finding anything particularly
implausible about the configuration of group differences as a
whole.

An earlier attempt to localize the shape difference between
these same callosa (Bookstein, 1995a, 1996b) exploited a
highly irregular landmark analysis to arrive at the same find-
ing. From a preliminary landmark-based image averaging of
the region of callosum, a shift was found between the aver-
age lower borders. A new landmark was constructed on the
individual border as the intersection of a straight line from
‘splenium’ to ‘genu’, where these two notions are now con-
strued as points rather than regions. Analysis of the pro-
portion into which this new landmark divided the diameter
of the callosum resulted in a finding about as strong as that
in Figure 8. In the alternate method, the equivalent of the
δ-filter is a consideration of the shapes formed by this new
landmark with respect to the two or three landmarks nearby.
Addition of just one more point, on colliculus, resulted in a
finding with about the same power as that in Figure 14 here.
However, as several colleagues have stubbornly pointed out
quite sharply, this hybrid technique corresponds to no formal
theory of morphometrics and affords no significance tests.
6. RELATED APPROACHES

The adaptive filter optimization here is partly analogous to
two otherwise disparate techniques that have been the sub-
ject of previous discussions in the literature of medical image
analysis. Techniques of anisotropic diffusion (Perona et al.
1994; Whitaker and Gerig, 1994) modify images toward the
equilibration of picture content within regions without allow-
ing information to diffuse across sharp boundaries. They thus
achieve part of the purpose of the processing needed here—
an enhancement of the signal normal to the boundary, by flat-
tening gradients elsewhere—without the corresponding relax-
ation along the boundary that seems the key to the success
of our filter. That lacuna is understandable, of course, in
that these diffusion techniques deal with analysis of pictures
size of neighborhood (count of landmarks)
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one at a time, whereas what is relaxed by the spline is not a
property of any single image, but of a pair or a whole data set
of instances in relation to a template or an average.

The δ-filter method can be considered as a limiting case of
a contrast-of-annuli filter. In light of the strongly anisotropic
nature of the preliminary spline processing, these annuli or
Gaussians are better taken not as circular but as severely elon-
gated in the direction of the edge under study. The combined
method here can be thought of as an even larger-scale adap-
tation of such contrasts to the vicissitudes of large-scale cur-
vature at some distance—it is as if the edge were straightened
before these parametrically simple filters were applied. The
large-scale approach of Figure 9 is thus complementary to this
entire family of filters; cf Coggins and Huang (1993). Had we
chosen a great many more points on these outlines, perhaps
260 rather than 26, we would experiment with alterations of
the inner radius of the Procrustes filter, to allow the consider-
ation of more than one ‘center’ at a time. For the equivalent
in the one-dimensional analogue of Figure 12, see Bookstein
(1996d).
But the δ-filter is not at all closely related to other extant
methods of multivariate statistical analysis of curving form,
which share most of their spectral characteristics with the
complementary, large-scale landmark technique introduced
in connection with Figure 9. In the hands of other multi-
variate statisticians, samples of outlines have almost been
analyzed by one or another decomposition into orthogonal
series [Nastar and Ayache, 1994; Cootes and Taylor, 1996;
Sampson et al., 1996; see Rohlf (1990) for a review of the
classical work]. Sometimes these are geometric orthogo-
nal functions, eigenfunctions of energetics of the mean form
(Fourier decompositions, ‘normal modes of bending’) and
sometimes they are empirical orthogonal functions (princi-
pal components of covariations of position). In the former
approach, features at small scale are required to be orthogo-
nal to those at large scale, so that the last few terms of any
decomposition look like high-frequency oscillations around
the average outline and thus cannot localize. In the latter
approach, small effects on large regions of outline domi-
nate large effects on small regions, as was the case for the
Figure 14. Analysis for the optimal neighborhood around point 15. Upper left, group mean outlines and Procrustes scatter. Upper right,
individual outlines. Lower left, output of the δ-filter at point 15. Lower right, comparable output of the full Procrustes fit (Figure 8) with which
we began. N, normals; S, schizophrenics. All panels are in the orientation of the entire form, Figure 8.
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callosal outlines here, and so a local signal that was de-
tected at all would already have been low-pass filtered—it
would be visualized at too large a spatial scale to be infor-
mative. The finding at semi-landmarks 14–15 here suits none
of these function-space approaches. If it is developed fur-
ther, a wavelet decomposition of curving form such as that
suggested by Ackroyd and Mardia (1996) may prove com-
plementary to the large-scale approaches via orthogonal de-
composition. But because wavelet decompositions are, in
general, not invariant against the Euclidean similarity group,
considerable modifications will be required before there can
be a wavelet description of any scientific phenomenon like
the local boundary shift that has proved so robust a finding
here.

Tagare et al. (1995) have suggested a curve-to-curve
matching protocol optimizing a functional that curiously com-
plements this slipping spline. In effect, the correspondence
they compute minimizes the integral along the curve of a sum-
of-squares that combines acceleration or deceleration along
the curve together with differences of bending in the normal
direction. When the weight of this second term (which serves
as a regularization) is set suitably, the combination is nearly
the same as the first and third terms in the integrand for bend-
ing energy, Equation (5). But in the spline method the integral
is taken over the entire picture plane and so allows aspects
of the global differential geometry of the curves to affect the
correspondence. It is the linearization of that global aspect,
not the local, that is most conducive to subsequent statistical
analyses.

Davatzikos et al. (1996) studied callosal outlines similar
to ours that were acquired by an automatic active contour
method. Outlines of a sample are related to an a priori norm
by an elastic relaxation. The relation of each individual to the
norm is then described by an areal distortion function, in effect
the area of the little squares in our spline figures. Groups
(in their example, eight male and eight female elderly from
Baltimore) are compared by averaging this derived quantity
at corresponding points of the normative form or over regions,
and thresholding those differences at various effect sizes.

Davatzikos was kind enough to send me his data set
for reanalysis by the method of the present manuscript.
The permutation test of spline-slipped coordinates for the
posterior ‘half’, this time comprising 50 semi-landmarks (for
16 cases!), finds a shape difference between the sexes that is
significant at p ∼ 0.015 before the correction factor of 2
is applied. The difference is primarily a vertical extension
of the splenium. Davatzikos et al. (1996) found a change of
area in this region, but did not report any directionality and
apparently could not test for statistical significance in a sample
so small. Indeed, they offered no graphical representation of
sample variation at all.
What differences between the methods might account for
this difference in power? Both algorithms have a matching
step in which points of a candidate callosal outline are as-
signed to points of a standard outline by minimizing a formu-
lation in terms of energy and both ‘energies’ are abstract, non-
physical. But in general, description by the areal-ratio scalar,
like any other scalar description, uses one parameter (here the
determinant) from the three that together describe the tensor
field of affine derivatives, and so discards more than half of the
information available for discussions of variability. Restoring
it in the form of those tensors, furthermore, is not a very
good idea (Bookstein, 1991). Statistical analysis works much
better using the more linear spaces of shape features reviewed
here. If transformations are uniform, specialized Procrustes
methods are optimized for their estimation, comparison and
testing (see Bookstein, 1996a, 1997). Visualization by areal
ratio following elastic matching is tuned to one particular
form of shape change: relatively homogeneous increase in
area over compact regions that the elastic model treats in a
somewhat homogeneous fashion. In the present data set, for
instance, changes of area might partially describe a reshaping
of splenium, but would not detect the shift of isthmus strongly
to the upper right, which is our principal finding.

Of course, the initial steps in the Davatzikos procedure,
active contour analysis and elastic relaxation, are familiar
aspects of the analysis of individual images. In particular,
the active contour method is obviously better than manual
digitizing of the outline of the callosum where it blurs into
neighboring structures (such as the fornix mentioned above).
In this context, standard imaging tools can adequately simu-
late the performance of a skilled human. They do not extend
to the further task of biometric analysis, however, at which
unaided humans typically do not do very well either. Our
Procrustes tactics and the thin-plate spline, while simpler, al-
gebraically totally explicit, and exactly suited to the specific
task of quantitative group comparison, are familiar mainly to
the evolutionary biologist. They are not to be found in gradu-
ate curricula for imaging or in textbooks and their sources in
the refereed literature were, until recently, quite sparse. But
they can find scientific signals that are out of reach of familiar
methods tuned to other purposes, such as object recognition or
image segmentation. There is no particular reason to expect
methods suited for one task to be suited for another, any more
than the biometric techniques of this paper would bring any
particular efficacy to the context of segmentation.
7. CONCLUDING REMARK

The finding here is obviously tentative. The callosum is a
complex three-dimensional structure not adequately sampled
by its midsagittal section, certainly not the crudely positioned
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approximations here, and our 13 patients were not of any
homogeneous clinical class. Instead this presentation was
intended as a prototype for new and potentially powerful
methodological possibilities.

To be able to treat curving form by landmark methods with-
out requiring their acquisition in landmark-anchored form is
a significant step forward in the morphometrics of biomedical
images. For many three-dimensional data sets, for instance,
representation of high-contrast surfaces works well by the
method of ridge curves or crest lines (Thirion, 1994; Dean
et al., 1996a), which extracts reliable three-dimensional loci
at which the surface is locally most like a sharp edge. Sta-
tistical methods for analysis of such data have hitherto either
been limited to very simple parametric models—rigid motion,
polynomial warping—or have required the extraction of spe-
cific landmark points specimen by specimen (typically, cur-
vature maxima along these curves). Such landmarks are typi-
cally much noisier than the arcs on which they lie. The com-
bination of the spline relaxation and the associated multiscale
multivariate statistics makes it possible to analyze such curves
as a whole, by assigning semi-landmarks that describe the re-
lation to a template without requiring any geometric semantics
of characterization upon the individual form. In this aspect
these new methods are converging with other approaches to
form-comparison from McGill, Washington University and
elsewhere, in which parametrization of the individual form is
subordinated to parametrization of the relation to a template.
For landmark data sensu stricto, these parametrizations are
identical a priori: the points of shape space serve equally well
as vector specifications of the corresponding splines (Book-
stein, 1996a).

The spline relaxation and mixed multivariate methods used
here will sustain valid findings to the extent that the multi-
scale model driving them is an adequate preliminary repre-
sentation of the information discriminating the image groups
under study: discrete group differences of either large or
small scale. In this aspect it joins the mainstream of mor-
phometrics to the most active current in analysis of medi-
cal images separately. Morphometrics can thus contribute
to medical image analysis as a method for multiscale im-
age comparison, a theme absent from many other current ap-
plications of the multiscale theme. [It does, however, ap-
pear in the McGill approach to atlas matching: see Evans
et al. (1996).] This approach may, for instance, be helpful
in studies of myocardial wall motion, the effect of disease
on which has often been modeled as local defect of ‘motion’
with respect to a globally twisting shape change at quite large
scale (e.g., McEachen et al., 1994). It may also be helpful
in more detailed consideration of the shapes of fluid-filled
cavities such as the cerebral ventricles (Dean et al., 1996)
or other complex shapes having subtle but crucial functional
implications, shapes that have hitherto proved difficult for
analyses that followed conventional image-by-image process-
ing.
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